
Understanding how novice programmers
solve novel programming problems

Francis Castro
@_franciscastro_

Kathi Fisler
@KathiFisler

07 August 2019 University of Massachusetts Amherst 1

(Let’s frame this a little bit)

What...
… do we know about how
novices problem-solve in
programming?

… is the learning context of
the novices we’re studying?

… do we challenge our
novices to do?

2

(Let’s frame this a little bit)

What...
… do we know about how
novices problem-solve in
programming?

… is the learning context of
the novices we’re studying?

… do we challenge our
novices to do?

sum = 0
for each num in input_list:

sum = sum + num
return sum

Retrieval Creation

Novices retrieve and use plans to write code.

Plans: organization of tasks or code that relate to the
components of a problem

Soloway, Spohrer,
Anderson (late 1980s)

Rist (1990s)

3

(Let’s frame this a little bit)

What...
… do we know about how
novices problem-solve in
programming?

… is the learning context of
the novices we’re studying?

… do we challenge our
novices to do?

College students
enrolled in CS1-level
courses learning
programming through
the design-recipe.

Example: Write a
function to sum a list
of numbers

; A list-of-number is:
; - empty or
; - (cons number list-of-number)

(define even-nums (list 2 4 6))

; sum-nums : list-of-numbers -> number
; Produces the sum of all numbers in the list

(check-expect (sum-nums even-nums) 12)

; (define (list-fxn list-input)
; (cond [(empty? list-input) ...]
; [(cons? list-input) ... (first list-input)
; (list-fxn (rest list-input)) ...]))

(define (sum-nums nums-list)
 (cond [(empty? nums-list) 0]
 [(cons? nums-list) (+ (first nums-list)
 (sum-nums (rest nums-list)))]))

Describe the shape/
structure of the data

Describe the
expected behavior

Code skeleton based
on the structure of
the data

Fill in the function
details 4

(Let’s frame this a little bit)

What...
… do we know about how
novices problem-solve in
programming?

… is the learning context of
the novices we’re studying?

… do we challenge our
novices to do?

What if we gave students programming problems with some degree of “newness”?

Rainfall problem
Find the average of nonnegative numbers in a list
of numbers up to a sentinel (-999), if the sentinel
appears. If the average can’t be computed, return -1

Max-Temperatures problem
Given a list of sublists separated by a delimiter,
where each sublist is a list of numbers, produce a
list of the maximum values of each sublist.

(a classic in CSEd research!)

(list 1 -3 2 3 -999 8 0) -> 2 (list 40 42 “d” 50 “d” 56 52 50)
-> (list 42 50 56)

● Have seen lists and most of the task-components
(summing, counting, removing elements)

● May require integrating familiar tasks in new ways

● Have seen lists and some task-components (max)
● Have not seen sublists embedded in a flat list
● May require plans just beyond what students have

seen so far 5

(Let’s frame this a little bit)

What...
… do we know about how
novices problem-solve in
programming?

… is the learning context of
the novices we’re studying?

… do we challenge our
novices to do?

Plan

Retrieval Creation College students enrolled in
CS1-level courses learning
programming through the
design-recipe.

Programming problems with
some degree of “newness”
(just beyond what students
have seen so far)

RQ: How do CS1 students navigate through their knowledge of (1) plans and (2)
programming tools to solve new programming problems?

Goal: Develop ways-of-thinking (frameworks) about how students navigate plan
and tool knowledge to solve programming problems

6

What does our data look like?

We go back to classic techniques used in cognitive science — think-alouds!

= hundreds of hours of student verbalizations, explanations, decisions for analysis

● Give students a programming problem
● Students think-aloud while solving the problem (audio-recorded)
● Post-hoc interviews (also recorded)
● Think-aloud and interviews are transcribed for analysis

7

Problem-statement

Program

High-level task-thinking Low-level
implementation-thinking

● Identify and describing tasks
● Describing relationships between

tasks
● Retrieving plans for familiar tasks

● Retrieving task-relevant code
● Implementing task-relevant code
● Composing task-relevant code

Plans

Task-level or
code-level

plans

8

Problem-statement

Program

High-level task-thinking Low-level
implementation-thinking

● Identify and describing tasks
● Describing relationships between

tasks
● Retrieving plans for familiar tasks

● Retrieving task-relevant code
● Implementing task-relevant code
● Composing task-relevant code

Plans

Task-level or
code-level

plans

Students who enter in low-level mode rarely
return to thinking in tasks, even when code isn’t
working

Students who started thinking in tasks make
more progress than students who work entirely
in code

9

Students who enter in low-level mode rarely
return to thinking in tasks, even when code isn’t
working

Students who started thinking in tasks make
more progress than students who work entirely
in code

Find the average of nonnegative numbers in a list
of numbers up to a sentinel (-999), if the sentinel
appears. If the average can’t be computed, return -1

Should take out the
numbers before -999 first,
then take out negatives.
Then sum and count...

Sounds like a for-loop/
Sounds like a recursive
template...

10

Problem-statement

Program

High-level task-thinking Low-level
implementation-thinking

● Identify and describing tasks
● Describing relationships between

tasks
● Retrieving plans for familiar tasks

● Retrieving task-relevant code
● Implementing task-relevant code
● Composing task-relevant code

Plans

Task-level or
code-level

plans

Students who describe HL tasks and relationships,
BUT lose track of the high-level insight when
focusing on code, compose their code incorrectly

11

Problem-statement

Program

High-level task-thinking Low-level
implementation-thinking

● Identify and describing tasks
● Describing relationships between

tasks
● Retrieving plans for familiar tasks

● Retrieving task-relevant code
● Implementing task-relevant code
● Composing task-relevant code

Plans

Task-level or
code-level

plans

Some can describe high-level plans, but lack
concrete details to establish relationships
between identified task-components

Even when students can retrieve a plan, this does
not mean they can necessarily see the subparts of
the plan as things that could be separately
implemented in code

12

Even when students can retrieve a plan, this does
not mean they can necessarily see the subparts of
the plan as things that could be separately
implemented in code

(define (average input)
 (cond [(empty? input) empty]
 [(cons? input) (/ (+ (first input) (average (rest input)))
 (length input))]))

(define(average input)
 (cond [(empty? input) -1]
 [(cons? input) (/ (sum input) (count input))]))

(define (sum input)
 (cond [(empty? input) 0]
 [(cons? input) (+ (first input) (sum (rest input)))]))

(define (count input)
 (cond [(empty? input) 0]
 [(cons? input) (+ 1 (count (rest input)))]))

Just jammed the formula
into the list-template

Correct version

13

Some can describe high-level plans, but lack
concrete details to establish relationships
between identified task-componentsMax-Temperatures problem: Given a list of sublists separated

by a delimiter, where each sublist is a list of numbers, produce a
list of the maximum values of each sublist.

(list 40 42 “d” 50 “d” 56 52 50) -> (list 42 50 56)

“I think what would be the best if I split it up into
lists and then worked through each list individually

but I'm not sure quite how to do that.”

Doesn't describe the “glue" that would make
task-components work together
(i.e. how to store the “splitted” lists, e.g. list of lists)

“you want to check [each element] and when you
hit the [delimiter], you want to process the

[numbers] before it, and then you want to [repeat
the process] and continue doing that. [...] I think I

have the right idea […] but the problem is once I hit
the [delimiter], I don't know what to do.”

Doesn't describe the “glue" that would make this
work
(i.e. how to keep track of the sublist being
processed and how to store the “processed”
sublists)

14

If we can figure out patterns of where (in the HL-LL dynamic) students are struggling when solving
problems, we can catch them at those points at potentially design interventions around those points

● Learning activities and assessments
● CS1-level IDEs (BlueJ, DrRacket, etc.)
● Modalities

(Future research topics!)

- Mark Guzdial (BLOG@CACM: Learning Computer Science is Different than Learning Other STEM Disciplines, Jan. 5, 2018)

15

