Qualitative Analyses of Movements
Between Task-level and Code-level
Thinking of Novice Programmers

Paper and slides:
bit.ly/francis-sigcse2020

Email:
Francis Castro Kathi Fisler fgcastro@cs.wpi.edu
@_franciscastro_ @KathiFisler

SIGCSE 2020

BROWN Portland, Oregon

Given a list of numbers,
produce the average of
the non-negative numbers
that occur before -999

Get the non-negatives first,

Use a for’ loop and fif'...
then sum and count ...

Thinking in tasks

Thinking in code

o
—

Research tells us that: Students retrieve prior code and/or task knowledge

e How do students approach -
— familiar problems?
- novel problems?

e How do students move between these
two levels while programming?

e How do these movements relate to their

success on our programming problems? e What do they do when they get stuck?

(How do they use design techniques they're taught?)

How do students move between these two levels while programming?
We gave students problems with varying degrees of novelty

Tasks
Problems Rainfall - compose known tasks/subproblems in new ways -Sum
- Count
- Average [new composition]
- lgnore negatives
- Terminate [new task]

Given a list of numbers, produce the average of the non-
negative numbers that occur before -999

Example: rainfall ([1,1,-3,4,-999,201) is 2

Max-Temps — solve and compose new tasks/subproblems - Find sublists [new task]

- Find max
Given a list of numbers, return the max values in each - Build results
sublist as separated by a delimiter (e.g., ‘d) - (Reshape input) [new task]
. [3’5’d’2’d’7’573]
Example: maxtemps([3,5,d,2,d,7,5,31) is [5,2,7] l

[[3,51[2][75,31]

Students Think-alouds with students from two universities; both schools used the same
curriculum (design recipe) with some variations in topic orderings

STEP 1: DESCRIBE THE SHAPE_QEdsi==2NFU |

A list-of- er g
- empty; o
- (cons*fiumber list-of-number)

STEP 2: WRITE EXAMPLES OF THE INPU

(define even-nums (list 4 2 6))
(define odd-nums (list 5 1 27))
(define one-num (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

sum-nums : list-of-numbers -> number
Produces the sum of numbers in the list

(checArexpXct (sum-nums odd-nums) 33)

STEP 5: WRRTE A\ FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STEP 1)

fxn-§ame list-input)
(cond Y(empty? list-input) ... 1
cons? list-input) .. first list-input)
(fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
(cond [(empty? nums-list) 0]
[(cons? nums-list) (+ (first nums-list)
(sum-nums (rest nums-1list)))1))

STEP 7: TEST AND REFINE

Methods We audio-recorded and transcribed the sessions, then coded for how students went
about each problem, capturing (among others):

e when they talked in terms of tasks/code e how individual tasks were implemented
e tasks students identified or planned out e overall approach of their final solution

Key observations: How do they move between tasks and code?

Code-focused students jump immediately into writing code
e No high-level solution plan — only think about problem-level tasks on-the-fly
o Get stuck

One-way students start with a high-level plan -
e —but revert to a code-focused behavior
e Don't return to thinking about their plan or problem-level tasks and get stuck later on

Cyclic students often talked about problem-level crs2-student4:

tasks in the context of a high-level plan “I'm thinking [the] best way to approach [Rainfall], you

e Concrete descriptions of tasks’ code take your list of numbers before minus 999, create a
implementations new list from that [then] take out all the non-negative

e Compositions of code is quided by their numbers and then [do] foldr with the average. Foldr to
descriptions of relationships between tasks find the sum and then divide that by the length”

e Mostly succeeded on the problems

Key observations: Why do students get stuck?

Students struggle to describe how tasks connect to each other

Max-Temps example:

e Reshaping data — extract and track the [3,5,d,2,d,7,5,3] > [[3,5],[21,[7,5,31]
sublists

e Students can't figure out how to keep crsi-studentl: 7 think what would be the best if | split it up
track of sublists (list-of-lists) into lists and then worked through each list individually
but I'm not quite sure how to [store the lists]”

e Fragmented plans: they do not know —
— What reshaping function produces
— What data to use as input to process a reshaped input

Key observations: Why do students get stuck?

Students fail to identify the limitations of retrieved patterns in the context of the tasks

Rainfall example: (define (average nums-list)
e Mechanical use of the list template (cond [(empty? nums-list) empty]
[(cons? nums-list)
(/ (+ (first nums-list) (average (rest nums-list)))
(+ 1 (average (rest nums-list))))1))

e Makes sense (based on problem Given a list of numbers, produce the average of
statement), but overuses the template the non-negative numbers that occur before -999

e Did not think about how average’s average (list input, but no traversal)
task-components impact the use of sum (traversal task) count (traversal task)

the template code

— Need to modify template? How? (ERIE (EVErEES MUNS=LISE)

(cond [(empty? nums-list) -1]

[(cons? nums-1list)
(/ (sum nums-list) (count nums-1list))1))

Key observations: Why do students get stuck?

Students are mechanically producing data definitions (step 1) they’d seen before

A Newday is one of
- "new-day"
- Number

(define (nd-temp nd)
(cond [(string=? nd "new-day") ...]
[L(number? nd) ... 1))

e Fine for a single element.. but not the input list

A Day is one of

- empty
- (cons number string)

e Used regular list template (with errors)
e Suggests mechanical writing of data-definitions

e |nstructor interviews show that students
had only seen a limited repertoire of data

Recommendation: Have students do a
wider variety of data design activities

list-of-element is

empty, or

(cons string list-of-element), or
(cons number list-of-element), or

l

(define (fxn-name input)
(cond [(empty? input) ...]
[(string? (first input)) ...]
C(number? (first input)) ... 1))

Key observations: How did students try to get unstuck?

We hoped students would fall back on appropriate design recipe steps when stuck...

e Mechanical use - they started with them, but did not go back to them when they got stuck
e Missed opportunities:

e (el e Expand examples to identify tasks/decompositions

(cond [(empty? lon) 0]
[(cons? 1lon)
(if (not-999? (first lon))

(rainfall (list 1 2 3))

(/ (sum (list 1 2 3))
(count (list 1 2 3)))

(/ (+ (first lon) (rainfall (rest lon)))
(length (filter not-9997?7 lon)))

2)1))

crs2-studento — What's happening here?
e Mechanical use of template

(rainfall (list 3 1 -7 2 -999 4))

. (rainfall (list 3 1 -7 2 -999))
e Did not decompose the code around the tasks (rainfall (list 3 1 -7 2))

e Struggled to figure out what to do with -999

Takeaways

Students with
most success

Students who
struggled

Teaching
design
practices

Concretely described task-relationships in the context of an overall solution plan
Used insight from task-relationships to guide the composition of their code

Primarily worked in code without context of an overall solution plan

e Not enough to teach how to use design techniques to plan solutions in advance
e Students need to do a wider variety of data design activities
e Students also need to be taught how to go back to design techniques when stuck

Example activities:
o Give code with errors and use design recipe steps to reason about causes of errors
o Expand examples to identify tasks/decompositions

10

Takeaways

Teaching e Teach problem-level decomposition explicitly — guide code compositions with
design insights from task-relationships
practices

e Have students do more activities around identifying and planning around tasks without
being expected to write code

e Example activities:

o Multi-task problems: Have students identify and write tasks and concretely describe
how tasks relate to each other (e.g. use type signatures)

o Show how a decomposition of a problem into tasks in advance lends to smaller,
(template) functions

11

Qualitative Analyses of Movements
Between Task-level and Code-level
Thinking of Novice Programmers

Speaker: Paper and slides:

Francis Castro bit.ly/francis-sigcse2020

@_franciscastro_ Email:
fgcastro@cs.wpi.edu

Email or tweet me for questions!

12

