
Qualitative Analyses of Movements
Between Task-level and Code-level
Thinking of Novice Programmers

Francis Castro Kathi Fisler

1

Paper and slides:
bit.ly/francis-sigcse2020

@_franciscastro_ @KathiFisler

SIGCSE 2020
Portland, Oregon

Email:
fgcastro@cs.wpi.edu

Given a list of numbers,

produce the average of

the non-negative numbers

that occur before -999

2

Get the non-negatives first,
then sum and count . . .

Use a ‘for’ loop and ‘if’ . . .

Thinking in code Thinking in tasks

● How do students approach —

— familiar problems?

— novel problems?

● What do they do when they get stuck?

(How do they use design techniques they’re taught?)

Research tells us that: Students retrieve prior code and/or task knowledge

● How do students move between these

two levels while programming?

● How do these movements relate to their

success on our programming problems?

3

How do students move between these two levels while programming?

Rainfall — compose known tasks/subproblems in new ways

Given a list of numbers, produce the average of the non-

negative numbers that occur before -999

Example: rainfall ([1, 1, -3, 4, -999, 20]) is 2

Problems

We gave students problems with varying degrees of novelty

Max-Temps — solve and compose new tasks/subproblems

Given a list of numbers, return the max values in each

sublist as separated by a delimiter (e.g., ‘d’)

Example: maxtemps ([3, 5, d, 2, d, 7, 5, 3]) is [5, 2, 7]

- Sum

- Count

- Average [new composition]

- Ignore negatives

- Terminate [new task]

- Find sublists [new task]

- Find max

- Build results

[3, 5, d, 2, d, 7, 5, 3]

Tasks

[[3, 5], [2], [7, 5, 3]]

- (Reshape input) [new task]

4

Think-alouds with students from two universities; both schools used the same

curriculum (design recipe) with some variations in topic orderings

We audio-recorded and transcribed the sessions, then coded for how students went

about each problem, capturing (among others):

Students

● how individual tasks were implemented

● overall approach of their final solution

Methods

● when they talked in terms of tasks/code

● tasks students identified or planned out

STEP 1: DESCRIBE THE SHAPE OF THE INPUT

A list-of-number is
- empty, or
- (cons number list-of-number)

STEP 2: WRITE EXAMPLES OF THE INPUT

(define even-nums (list 4 2 6))
(define odd-nums (list 5 1 27))
(define one-num (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

sum-nums : list-of-numbers -> number
Produces the sum of numbers in the list

STEP 4: ILLUSTRATE THE FUNCTION’S PURPOSE W/ EXAMPLES (TEST CASES)

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: WRITE A FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STEP 1)

(define (fxn-name list-input)
(cond [(empty? list-input) ...]

[(cons? list-input) ... (first list-input)
(fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
(cond [(empty? nums-list) 0]

[(cons? nums-list) (+ (first nums-list)
(sum-nums (rest nums-list)))]))

STEP 7: TEST AND REFINE

5

Key observations: How do they move between tasks and code?

Cyclic students often talked about problem-level

tasks in the context of a high-level plan

● Concrete descriptions of tasks’ code

implementations

● Compositions of code is guided by their

descriptions of relationships between tasks

● Mostly succeeded on the problems

Code-focused students jump immediately into writing code

● No high-level solution plan — only think about problem-level tasks on-the-fly

● Get stuck

One-way students start with a high-level plan —

● — but revert to a code-focused behavior

● Don’t return to thinking about their plan or problem-level tasks and get stuck later on

crs2-student4:

“I’m thinking [the] best way to approach [Rainfall], you

take your list of numbers before minus 999, create a

new list from that [then] take out all the non-negative

numbers and then [do] foldr with the average. Foldr to

find the sum and then divide that by the length”

6

Key observations: Why do students get stuck?

Students struggle to describe how tasks connect to each other

crs1-student1: “I think what would be the best if I split it up

into lists and then worked through each list individually

but I’m not quite sure how to [store the lists]”

Max-Temps example:

● Reshaping data — extract and track the

sublists

● Students can’t figure out how to keep

track of sublists (list-of-lists)

[3, 5, d, 2, d, 7, 5, 3] [[3, 5], [2], [7, 5, 3]]

● Fragmented plans: they do not know —

— What reshaping function produces

— What data to use as input to process a reshaped input

7

Key observations: Why do students get stuck?

Students fail to identify the limitations of retrieved patterns in the context of the tasks

(define (average nums-list)
(cond [(empty? nums-list) empty]

[(cons? nums-list)
(/ (+ (first nums-list) (average (rest nums-list)))

(+ 1 (average (rest nums-list))))]))

● Makes sense (based on problem

statement), but overuses the template

Given a list of numbers, produce the average of

the non-negative numbers that occur before -999

sum (traversal task) count (traversal task)

(define (average nums-list)
(cond [(empty? nums-list) -1]

[(cons? nums-list)
(/ (sum nums-list) (count nums-list))]))

average (list input, but no traversal)● Did not think about how average’s

task-components impact the use of

the template code

— Need to modify template? How?

Rainfall example:

● Mechanical use of the list template

8

Key observations: Why do students get stuck?

Students are mechanically producing data definitions (step 1) they'd seen before

A list-of-element is
- empty, or
- (cons string list-of-element), or
- (cons number list-of-element), or

Recommendation: Have students do a

wider variety of data design activities

(define (fxn-name input)
(cond [(empty? input) ...]

[(string? (first input)) ...]
[(number? (first input)) ...]))

A Newday is one of
- "new-day"
- Number

(define (nd-temp nd)
(cond [(string=? nd "new-day") ...]

[(number? nd) ...]))

● Fine for a single element… but not the input list

A Day is one of
- empty
- (cons number string)

● Used regular list template (with errors)

● Suggests mechanical writing of data-definitions

● Instructor interviews show that students

had only seen a limited repertoire of data

9

Key observations: How did students try to get unstuck?

We hoped students would fall back on appropriate design recipe steps when stuck…

● Mechanical use — they started with them, but did not go back to them when they got stuck

● Missed opportunities:

(rainfall (list 3 1 -7 2 -999 4)) -> 2
(rainfall (list 3 1 -7 2 -999)) -> 2
(rainfall (list 3 1 -7 2)) -> 2

(rainfall (list 1 2 3)) -> 2

(/ (sum (list 1 2 3))
(count (list 1 2 3))) -> 2

Expand examples to identify tasks/decompositions

Using examples may show base-case role of -999

(define (rainfall lon)
(cond [(empty? lon) 0]

[(cons? lon)
(if (not-999? (first lon))

(/ (+ (first lon) (rainfall (rest lon)))
(length (filter not-999? lon)))

0)]))

crs2-student9 — What’s happening here?

● Mechanical use of template

● Did not decompose the code around the tasks

● Struggled to figure out what to do with -999

● Concretely described task-relationships in the context of an overall solution plan

● Used insight from task-relationships to guide the composition of their code

10

Takeaways

● Primarily worked in code without context of an overall solution plan

Students with
most success

Students who
struggled

Teaching
design
practices

● Not enough to teach how to use design techniques to plan solutions in advance

● Students need to do a wider variety of data design activities

● Students also need to be taught how to go back to design techniques when stuck

● Example activities:

○ Give code with errors and use design recipe steps to reason about causes of errors

○ Expand examples to identify tasks/decompositions

11

Takeaways

Teaching
design
practices

● Example activities:

○ Multi-task problems: Have students identify and write tasks and concretely describe

how tasks relate to each other (e.g. use type signatures)

○ Show how a decomposition of a problem into tasks in advance lends to smaller,

(template) functions

● Teach problem-level decomposition explicitly — guide code compositions with

insights from task-relationships

● Have students do more activities around identifying and planning around tasks without

being expected to write code

Qualitative Analyses of Movements
Between Task-level and Code-level
Thinking of Novice Programmers

Francis Castro

12

Paper and slides:
bit.ly/francis-sigcse2020

@_franciscastro_ Email:
fgcastro@cs.wpi.edu

Speaker:

Email or tweet me for questions!

