
Designing a Multi-Faceted SOLO Taxonomy to Track Program
Design Skills Through an Entire Course

Francisco Enrique Vicente Castro

Worcester Polytechnic Institute

fgcastro@cs.wpi.edu

Kathi Fisler

Brown University and WPI

kfisler@cs.brown.edu

ABSTRACT

This paper explores how to assess students’ skills in program de-

sign and how those skills evolve across an entire CS1 course. We

gathered various data from students, including programming sam-

ples and transcripts from interview and think-aloud sessions. As

we coded the data, a progression resembling a SOLO taxonomy

appeared to emerge bottom-up. As we refined this with top-down

perspective from our curricular goals, we ended up with a novel

multi-faceted SOLO taxonomy to track students’ progress. We also

identified data that don’t fit a SOLO progression, yet reflect rele-

vant traits and habits about design. In applying our framework, we

learned several lessons about defining SOLO taxonomies and study

protocols that leverage them. The major contributions of this work

are (1) a taxonomy with separate but inter-related progressions

for different design skills (that is applied to an entire course rather

than a single assignment), along with (2) various methodological

lessons about applying and designing assessments around SOLO

taxonomies in this context.

CCS CONCEPTS

• Social and professional topics→ Computer science educa-

tion; CS1; • Human-centered computing→ User studies;

KEYWORDS

CS1, SOLO taxonomy, program design, qualitative methods

1 INTRODUCTION

Introductory computing courses are often designed towards a com-

mon learning outcome: students should be able to develop viable

programs to solve at least small-scale problems. While different

courses may use different programming languages and problem

domains, the underlying program-design skills are fairly common,

and include selecting appropriate language constructs, composing

code fragments for multiple problem tasks, and checking whether

the resulting program satisfies the original problem constraints.

Design skills evolve throughout a course, fostered through re-

peated application of language constructs and development of pro-

gram schemas. We would expect students to approach program

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Koli Calling 2017, November 16–19, 2017, Koli, Finland
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5301-4/17/11. . . $15.00

https://doi.org/10.1145/3141880.3141891

design differently, and perhaps more systematically, as they gain

in experience and confidence. Understanding how program-design

skills evolve in novice learners provides valuable input to those who

design curricula and pedagogy. Such understanding requires both

assessments that explore design skills from various perspectives,

but also rubrics for summarizing design skills across assessments.

This paper reports on the first phase of a study into the evolu-

tion of students’ design skills in an introductory CS curriculum.

We interviewed students about their design practices every two

weeks during a 7-week CS1 course. Two sessions reviewed students’

homework submissions, while the third asked students to solve the

Rainfall problem. We then used open coding on the transcripts to

develop a rubric for assessing the evolution of program-design skills.

What emerged was a multi-strand SOLO taxonomy. We also identi-

fied several factors that are not amenable to a SOLO progression, but

suggest potential impact on students’ design decisions. After devel-

oping progressions for individual skill strands, we calibrated across

the strands to give some coherence to each SOLO-level. Given the

number of component skills that “program design” encompasses,

we believe a multi-strand taxonomy offers a more nuanced view of

how design skills develop than more recent efforts to use a single

taxonomy to assess student work along a single dimension.

The main focus of this paper is the design of our multi-strand

SOLO taxonomy, and what we learned from applying it to assess

student data (program solutions and interview/think-aloud data)

across an entire course. Lessons about student design thinking that

emerged from using this taxonomy will be the focus of a different

paper. Our main contributions here are:

(1) proposing multi-strand SOLO taxonomies

(2) a concrete multi-strand taxonomy that captures aspects of

program design beyond coding and algorithm selection

(3) two models for applying the taxonomy across an entire

course

(4) methodological lessons about designing such taxonomies

and designing assessments around those taxonomies

2 RELATEDWORK

Biggs and Collis proposed the Structure of Observed Learning Out-
comes (SOLO) taxonomy model in 1982 [2]. These taxonomies cap-

ture the complexity of learning outcomes, looking at which aspects

of an overall task students have mastered. Each taxonomy pro-

gresses through five levels of complexity:

• Pre-structural: little to no understanding of the topic

• Uni-structural: understand one aspect of the task

• Multi-structural: understand several aspects of the task, but

the aspects are understood independently of one another

• Relational: understand several aspects of the task and how

they inter-operate

https://doi.org/10.1145/3141880.3141891

• Extended Abstract: can generalize understanding of aspects

to a new domain

A single taxonomy is intended to detail a progression of outcomes

within a single conceptual task. Biggs and Collis proposed themodel

as assisting in both assessment of student learning and in creating

“constructive alignment” between assessments and curricula.

Within computer science, SOLO taxonomies appear to have first

gained traction in the mid 2000s in the work of CSEd researchers

in Australia and New Zealand. Papers that use SOLO in CS edu-

cation generally focus on assessment of student work on a single

assessment: researchers identify a skill that they plan to assess, ar-

ticulate a SOLO taxonomy relative to that skill, apply the taxonomy

to student work on an assessment (exam or exercise), and report

student performance relative to the taxonomy. The papers present

the final SOLO taxonomy, without discussing how it was designed.

Such papers include Whalley et al. [23] (code reading, comprehen-

sion, and summarization), Lister et al. [10] (code comprehension),

Shuhidan et al. [17] (writing code to calculate max/min integers),

Ginat et al. [6] (algorithm design), and Izu et al. [7] (code design).

Our work builds on this model in several key ways. Our SOLO

taxonomy is designed to help us track and assess students’ progress

across multiple assessments in a (full) course, not just a single

assessment. As the course naturally targets several skills, our tax-

onomy has multiple strands, which we aligned at key points (see

section 5.2). In addition, we detail the process through which we

designed our taxonomy: it results from a combination of bottom-up

and top-down analysis of our data, which grounds our taxonomy

in our larger project from multiple perspectives.

Our taxonomy topics overlap those of Ginat et al. [6] and Izu

et al. [7]. Ginat’s emphasis is on selection and composition of high-

level design patterns. Task decomposition and code composition

are one of the aspects in our taxonomy, but we frame the progres-

sion differently. For example, Ginat’s unistructural level captures

solutions that translate a specification into a straightforward use

of a single design pattern. Ours instead assumes that each problem

could have multiple tasks, and calls a solution unistructural if it

maps some single subtask into code (potentially ignoring other

subtasks). By the relational level, Ginat expects students to com-

pose plans through interleaving, whereas our taxonomy expects

some composition of code for separate tasks. In other writing, Ginat

has expressed a preference for interleaved code on the grounds of

efficiency [11]. Our curriculum, in contrast, does not emphasize

efficiency, but teaches students to think about readability and main-

tainability as code is adapted to different contexts. Thus our two

projects have different values regarding composition skills, which

reflect in the different definitions of our SOLO levels.

Izu et al. (who respond to Ginat et al.) focused on code design

rather than pattern selection and integration [7]. Their taxonomy

is in terms of combining building blocks, which may or may not

arise from previously-learned general patterns. Our taxonomy has

a strand on writing functions, and like Izu et al., we look at how

students combine code fragments into solutions. Section 5.2 shows,

however, that our taxonomy shifts from syntactic to semantic un-

derstanding at the boundary of the multistructural and relational

levels, whereas Izu’s remains syntactic. Izu et al. also refer to solv-

ing “the given task”, whereas for us, identifying individual tasks in

the first place (and mapping them to code) is a key learning objec-

tive. In general, we believe that having a multi-strand taxonomy

lets us explore inter-related design skills of decomposing problems,

mapping subtasks to code, and composing code. Both Ginat and Izu

conflate or fix some of these issues. In addition, neither considers

testing, which we consider an equally-important design skill.

Thompson’s SOLO taxonomy for grading programming assign-

ments (which was also used to design exam questions) captures

multiple components of activity, but he weaves these into a single

strand (that requires certain behaviors from each component) [20].

For example, the multistructural level captured students who were

“making the standard in more than one aspect of the project”, where

aspects included code not crashing, code meeting a baseline of

required features, and following programming and user-interface

standards. We prefer our model of multiple strands, as it lets us

capture when students have made different levels of progress on

different components (whereas Thompson effectively reduces a

students’ level to the least level across all components). We are not

aware of other works that define a family of inter-related SOLO

taxonomies, each tied to the same underlying curriculum.

Some of our interview questions were inspired by work on re-

trieval of program schemas [12, 19], plan composition [18], and

novice planning behavior [15, 16]. While these works do not sug-

gest progressions within design practice, they do suggest factors

that may influence program design. Our SOLO strand on task de-

composition, in particular, reflects insights from this work.

3 COURSE: HOW TO DESIGN PROGRAMS
How to Design Programs (henceforth htdp) is an introductory com-

puting curriculum that has been adopted in higher education in-

stitutions and some K-12 programs [1, 5, 13]. htdp uses a unique

pedagogy for teaching program design through a multi-step process

(called the design recipe) for designing programs based on the struc-

ture of the input data [4]. Given a programming problem, students

are taught to work through a progression of steps:

(1) Identify and define the structure of the input data.

(2) Write (as executable code) examples of the input data.

(3) Write the name, input types, and output type (the contract)
for a function that will solve the problem and a one-line

summary of the program’s goal (the purpose).
(4) Write (as executable code) concrete examples (or test cases)

of what the program should produce on specific inputs.

(5) Write a skeleton of the body of the function that will fully

traverse the input data (the template). The template is specific

only to the type of input data, not to the computation being

performed in the given problem.

(6) Fill in the template with problem-specific details.

(7) Run the function on the tests, adding tests as necessary.

Figure 1 shows a complete example of the htdp steps. The code

is written in Racket (a variant of Scheme), the language used in the

htdp textbook [4]. The curriculum is particularly well-suited to

functional languages (though some instructors have adapted it to

imperative settings). It emphasizes data structuring (through tuples,

lists, and trees) more than variations on control flow (beyond re-

cursion). While other curricula foster skills such as the selection of

appropriate language constructs, code composition, and checking

; Problem: Design a function count -votes that consumes a list of names and a specific name,
; and counts how many times the specific name appears in the list of names.

;;; The Data Definition (RECIPE STEP 1)
; A list -of -string is
; - empty, or
; - (cons string list -of-string)

;;; Examples of Data (RECIPE STEP 2)
(define names (cons "pedro" (cons "pedro" (cons "ming" empty))))

;;; The Template (RECIPE STEP 5)
; Traverses the main input type, ignoring other problem -specific parameters.
; This allows the same template to be reused across multiple functions on the same type.
; The ellipses get filled with details from the specific problem, when the student gets to step 6.
#|
(define (los -func alos)

(cond [(empty? alos) ...]
[(cons? alos) ... (first alos)

... (los -func (rest alos)) ...]))
|#

;;; The contract and purpose (RECIPE STEP 3) and final function (RECIPE STEP 6)
; count -votes : list -of-string string -> number
; produces number of times the given string appears in the given list
(define (count -votes alos for -name)

(cond [(empty? alos) 0]
[(cons? alos) (cond [(string=? (first alos) for -name)

(+ 1 (count -votes (rest alos) for -name))]
[else (count -votes (rest alos) for -name)])]))

;;; Test Cases / Examples of Function (RECIPE STEP 4) -- written prior to writing code
(check -expect (count -votes empty "ann") 0)
(check -expect (count -votes names "ann") 0)
(check -expect (count -votes names "pedro") 2)

Figure 1: The htdp recipe steps on a problem to count howmany times a given string appears in a list. Semicolon is a comment

character; vertical bars with hash signs create block comments. Racket naming conventions use hyphens to separate words,

rather than camel casing. cond is the construct for a multi-armed if statement. cons is an operator for building lists from an

element and an existing list. check-expect captures a test case, with both the expression to run and its expected answer.

program behavior against problem constraints (i.e. testing), these

are embodied either explicitly (e.g. writing tests in Step 4) or im-

plicitly (e.g. necessary construct selection and code composition in

Step 6) in the htdp process. We are interested in identifying what

skills students draw on or manifest when using the htdp process.

The steps alternate between thinking abstractly (data types, con-

tracts, templates) and concretely (examples of data, examples of

program behavior, and completed function code). Each step builds

on at least one previous step. The recipe thus scaffolds the pro-

cess of program design, while also serving as a diagnostic for in-

structors: if a student is struggling to write a function but can’t

describe the input, the student likely hasn’t yet understood the ques-

tion. Additionally, the multiple levels of abstraction reflected in the

steps—from contracts, to examples of function behavior (tests), to

the structure of the input data (templates), to the completed code,

gradually provides students more detail for a program solution as

they work through the process. Understanding what relationships

students see between these different levels of abstraction is one of

our goals in studying design process development in htdp.

An htdp course shows how to apply the recipe to increasingly

rich data structures: it starts with programs over atomic data (num-

bers, strings, images), then progresses to compound data (struct-

s/records), lists of atomic data, lists of structs, binary trees, and

n-ary trees (mutual recursion). All design steps, including testing

and template design, are re-iterated throughout this progression.

After trees, the curriculum discusses higher-order functions (maps

and filters), functions that accumulate partial results in parameters,

and introduces stateful variables. Additional topics are covered in

semester-length htdp courses; the course used in this study runs

on a shorter calendar, and covers only the listed topics.

4 DATA COLLECTION

Our goal was to study how students evolved in their program-

design skills, as framed by the htdp design recipe and planning

literature, over the duration of the course. We were also interested

in identifying underlying factors that might impact how effectively

students were using the recipe.

Table 1: Topics and activities for each study session.

Session 1

Topic

Homework on lists of structs (sum cost of ads

for a political candidate)

Activities

(1) Interview on homework solution

(2) Compare alternative solutions

Session 2

Topic

Homework on n-ary trees (check oxygen levels

on system of rivers)

Activities

(1) Interview on homework solution

(2) Compare alternative solutions

Session 3

Topic Open coding - Planning (Rainfall)

Activities

(1) Think-aloud while writing code from scratch

(2) Interview on Rainfall solution

4.1 Logistics

We collected data from study sessions conducted with volunteer

CS1 students. Three sessions were conducted individually with

each of the volunteers. In sessions 1 and 2, we used an interview

protocol to draw out students’ knowledge and ideas about their

program design process by asking students to describe how they

had approached a specific homework problem (which they had re-

cently submitted). We also showed students an alternative solution

to what they submitted for homework and asked them to discuss

the differences (alternatives might move some functionality to a

helper function, or use an or statement in place of an if statement

that returned booleans, for example). In session 3, we gave them

a problem to try writing from scratch while talking aloud. After

solving the problem, we had them reflect on their work, similar to

the activity in sessions 1 and 2 asking students to describe their

approach (but without having them compare their work to an al-

ternative implementation). The design of session 3 — a think-aloud

followed by a retrospective interview, was partly adapted from

Whalley and Kasto’s design [22] to help clarify interviewer obser-

vations during the think-aloud portion in addition to the interview

questions used in sessions 1 and 2. Table 1 summarizes the topic

and activities done in each session.
1
Appendix A lists the questions

through which we asked students to reflect on their approaches

and to compare solutions.

One author conducted all of the sessions, each lasting roughly

an hour. Sessions occurred every two weeks starting after the first

exam (courses at WPI run at intense pace for 7 weeks). Neither

author was instructor for the course. Sessions were individual for

each participant. Each received USD 15 per session and an additional

USD 20 upon completing the study. We audio recorded all sessions

and collected students’ solutions and scratch paper.

4.2 Problem Selection Rationale

When selecting problems to include in each session, we wanted

problems that (a) would reflect the various design practices taught

in htdp, while (b) having at least two identifiable subtasks (so

that there were plausible alternative solutions to discuss). For the

1
Full homework questions available at: https://github.com/franciscastro/koli-2017

first two sessions, we discussed problems that involved traversing

a data structure and building up an answer based on data from

each element (each list element or each tree node). In the first

session, a function that computed part of the per-element data had

been assigned as an earlier problem on the same homework. In the

second session, students were left to consider the per-node task on

their own, without scaffolding from prior problems. Rainfall [18]

(session 3) was different in having multiple traversal-based subtasks

(counting, summing, and eliminating some elements): the default

traversal patterns students had learned did not apply naively to

Rainfall, thus letting us see how students employed their design

skills when decomposing richer problems.

The discussions of alternative solutions to problems in sessions

1 and 2 were designed to let us gauge what students notice about

solutions: did they talk only about code, or did they see tasks and

structure within code? We were curious about which additional

criteria (such as efficiency, readability, or shapes of code) students

might bring to their design work. Different alternatives for the

same problem would cluster subtasks differently: a function to

check whether any list element met a criterion, for example, could

either check the criterion while traversing the list, or could extract

elements that met the criterion then check whether the list is empty.

Students had been exposed to functions similar to each subtask in

earlier problems, so this design let us explore what they had picked

up from that prior exposure.

The problems also embodied different suggestions towards test-

ing: the first session problem looked for a specific name, which

suggests covering data with and without the name; the second had

three possible outputs, each of which should be covered. Rainfall

had some tests implicit in the problem description (such as those in-

volving negative numbers), but testing for Rainfall is more subtle as

the position of negative numbers within the list can be important.

4.3 Participants

Participants came from a CS1 course at WPI, a selective STEM-

focused university in the USA. We requested volunteers before

the first exam. Interested students provided information on their

intended major, whether they would take CS2 the following term,

their prior programming experience, programming languages they

had used, and a self-evaluation of their performance in the course

so far. We separately got their first exam grades from the instructor.

From an initial pool of 15 volunteers, we recruited 13 for the

study (one dropped out before the study began and another wasn’t

planning to take CS2—the full study extended over both courses).

We had six males and seven females. In terms of first-exam per-

formance, 6 students received a grade of A (3 male, 3 female), 3

received a B (2 male, 1 female), and 4 received a C (1 male, 3 female).

For this phase of the project, we used data from a sample of 6

students to develop the rubric for assessing students’ design skills.

We randomly selected 2 student volunteers from each of the first-

exam grade bins (for a total of 18 session transcripts). All 6 students

were freshmen (3 male, 3 female), 5 majoring in computer science

and one in bioinformatics. Of the 6 randomly selected students, 1

self-reported having no programming experience prior to CS1. In

terms of self-evaluation of their course performance, 1 reported

understanding the topics very well (with an easy time working on

assignments), 4 understood the topics well enough (assignments

were a bit challenging), and 1 found both the topics and course

assignments fairly challenging.

5 DEVELOPING AN ANALYSIS FRAMEWORK

To assess the development of student design skills, we needed to

identify which skills students draw on, based on their narratives

during the sessions. Developing a rubric for scoring students’ design

skills was thus the main task for this first phase of the project.

5.1 Identifying Skills and Skill Progressions

After the first session, we open-coded [3, 8] the student transcripts

from Session 1 as the other sessions were ongoing. To facilitate this,
we literally cut transcript printouts into phrases and iteratively

used card sorting
2
to cluster student comments into themes. Given

the questions that we asked students about their work (appendix A),

which reflected both htdp and planning literature, we expected

certain themes to arise in students’ responses (e.g., testing, working

with templates, use of learned schemas). Some themes emerged

independently of the curriculum, while one arose as we sought to

align the emerging codes with the curriculum. Table 2 summarizes

the resulting themes.

Comments on some themes suggested a progression within a core
skill (Table 2.a) resembling increasing levels of conceptual complex-

ity akin to SOLO levels. To capture these observed progressions, we

defined a SOLO taxonomy for each of these themes by mapping the

comments within each theme to a corresponding SOLO level. This

produced the multi-strand SOLO taxonomy; each theme identified

became a skill strand in the overall taxonomy. This was likewise

done iteratively to help us refine the concrete definitions of each

skill’s SOLO level. In one case (leverage multiple representations of
functions), a SOLO taxonomy arose more top-down, as we tried to

make sense of a collection of seemingly related comments within

the context of the overall curriculum. We also found other themes

that had comments of varying depth, but no core skill that could

give rise to a taxonomy (Table 2.b — we discuss these in section 9).

Figure 2 summarizes our iterative open-coding and taxonomy devel-

opment process. The actual taxonomies for SOLO-amenable themes

appear in table 3; we discuss each theme in turn.

Methodical Choice of Tests and Examples

Our study questions (appendix A) asked students about their choice

of test cases and examples of data. The students talked about the

kinds of tests and data examples they were writing, as well as

their reasoning around why they chose them. Some examples of

our observations include instances when students would simply

enumerate one test after another without identifying an inherent

purpose for their choices. There were also instances when students

justified why some tests and examples were interesting cases for

the problem context. The progression around this skill describes the

extent to which students are writing tests to cover a given problem

space; for example, the possible input, output, and interesting corner

cases. Here are two sample answers, both from session 1:

2
Card sorting is a method originally employed by psychologists to study how people

organize knowledge [24]; it has become a popular user-centered design method for

discovering optimal organizations of information for websites or software [14, 24].

Figure 2: Process summary for developing themulti-faceted

SOLO taxonomy. The entire process was done iteratively,

with discussions between authors during each iteration re-

fining the themes and descriptions for the taxonomy levels.

st1: I don’t think there was any specific reason [for choos-
ing] these [tests]. Oh, one of these is political and one of
these isn’t. That’s why. (question was about political ads)

st6: [This program] didn’t really have any bounds, like it
didn’t have an if greater than, if less than [...] I did one for
each condition, so if there’s empty, I satisfied that with this
test case. I did [a list that matches] in the first (element). I
realize now I probably should’ve done another one where
[the first list item] isn’t matching the name.

While st6 talked about the space of tests in the context of the

problem (seeing a collective purpose for the tests), st1 spoke only

about individual purposes of tests. Our progression for testing

captures the depth at which students see tests collectively.

Writing and Evaluating Function Bodies

Students described how they wrote their functions in response to

our question about the approach their code takes to solving the

problem. The main distinction among comments lay in whether

students described their code syntactically or with an understanding
of the underlying semantics. Differences in semantic understanding

is reflected in the following samples:

st1: If [the list is not empty], then you go through the if
statement and it checks to see if the ad’s political. And
if that’s true, then it adds the cost of the ad to just the
thing, the output, and it’ll go back to the list and look at
the next value and put it back to the beginning, and if it’s
not political, then it’ll just keep going to the rest of the list
until it reaches empty.

st1 fails to concretely articulate mechanisms around the helper

function (extracts a boolean value from the data structure) and the

results of the recursive call. Additional prompting further revealed

a knowledge gap in the use of selectors in the student’s function:

Table 2: Emergent themes from open-coding student transcripts.

(a) SOLO-amenable themes: these became the core skill strands in the multi-strand SOLO taxonomy

Theme Description

Methodical choice of

tests and examples

Knowledge of writing tests; understanding the individual/collective purposes of the tests

Writing and evaluating

function bodies

Knowledge of writing functions and the composition of expressions (i.e. built-in/user-defined

functions) to build function bodies (i.e. code-level perspective of programs)

Decomposing tasks and

composing solutions

Knowledge of identifying tasks in a given problem, the decompositions of a program into relevant

tasks, and the composition of solutions to tasks (problem-level perspective of programs)

Leverage multiple

representations of functions

Knowledge of the various representations of functions and how they interact, through the

components of the htdp design recipe

(b) Non-SOLO themes

Theme Description

Quality attributes

("ilities")

Qualities, properties, or criteria that is expected of or characterizes code or coding practice

(e.g. readability and maintainability of code)

Knowledge recalled

References to knowledge used in programming; this could be course knowledge

(i.e. learned from the course) or pre-course knowledge (i.e. learned prior to taking CS1)

Metacognition References to one’s cognitive processes or metacognitive behaviors such as self-regulation

Value judgments Value judgments towards aspects of the programming process, experience, or learning

Table 3: Multi-strand SOLO taxonomy. We omit extended abstract as none of our students reached that level in this study.

SOLO level

Methodical choice of

tests and examples

Writing and evaluating

function bodies

Decomposing tasks and

composing solutions

Leverage multiple repre-

sentations of functions

Prestructural

Does not know how to

write tests; misses the in-

put/output structure of tests

Does not know how to

define a function

Does not identify relevant

tasks for a problem

Just dives in and writes

code; uses only a single

representation

Unistructural

Able to write tests; descrip-

tions of tests do not explain

the purpose of the test(s);

does not express the idea of

varying test scenarios

Able to define functions

in a simple context - uses

primitive operations on

primitive types in a

function body

Able to identify relevant

tasks but no reflections of

separate tasks when talking

about the code

Blindly follows the design

recipe; sees each function

representation as indepen-

dent of others

Multistructural

Able to write multiple tests;

articulates the purpose of

individual tests but does not

articulate any relationship

between or collective pur-

pose for the tests

Able to define functions

whose bodies contain nes-

ted non-primitive expres-

sions or function calls, but

does not articulate the

semantics of how the re-

sults of calling a function

return to the calling context

Able to identify relevant

tasks; articulates the delega-

tion of tasks into separate

functions but fails to articu-

late how to effectively com-

pose the tasks in a way that

solves the problem

Articulates a sense of the

function representations

talking about or referring

to the same computation

Relational

Able to write tests; identi-

fies a collective purpose

for the tests, i.e. boundaries,

edge cases, test space co-

verage, but limited within

the context of the problem

Able to define functions

whose bodies contain nes-

ted non-primitive expres-

sions or function calls and

is able to articulate the

semantics of how the re-

sults of calling a function

return to the calling context

Able to identify relevant

tasks; articulates the delega-

tion of tasks into separate

functions and can articulate

how to effectively compose

the tasks in a way that

solves the problem

Articulates a mechanism

through which function

representations are related,

e.g. template uses types to

drive the code structure,

execution of a program

connects to a test space,

etc.

st1: we didn’t think we could pull out the one value from
the [data structure] from the original function. We had to
move that into a helper function, or else it wouldn’t work.

Contrast this with st3’s comment, which concretely explains how

the return value of the helper function relates to the calling function:

st3: if we are [given] a list, then we need to process it with
a helper function. [my function] checks if the politician’s
name is equal to the [input string]. And essentially [if it is]
we want to add the cost of that politician’s ad to the rest,
keep it as a rolling sum. [...] it’s going to add the air cost of
the first [list element] to the rest of the list. And we call the
function on itself, so it would go through the entire list.

Decomposing Tasks and Composing Solutions

None of our questions directly asked about how students decom-

posed the problem into subtasks, but students typically commented

on individual problem tasks in the context of the code. For example:

st6: so the first thing I did with the list of names, I run it
through this program [...] which takes this name and this
list and it gives me another list of ads containing only [ads
that match the name]. So, that list of ads is then acted on
by this [other] function [...] which takes a list of ad [...] and
produces the number of the total cost of that list.

While the narrative resembled writing and evaluating function
bodies in discussing code, it differed in the kind of abstraction it

employed; instead of a focus on language-specific components of

a program, st6’s narrative focused on tasks captured around the

functions, as well as the compositions of those tasks. The articula-
tion of how tasks are composed is critical: it establishes the logical

relationship between identified tasks and how tasks can be effec-

tively put together to produce output. The alignment of tasks and

code structure thus became a core skill for a SOLO taxonomy.

The following excerpt from st2 (when comparing two solutions

for a problem) shows a lower-level variation of this:

st2: I notice that you don’t have a helper function for this
one, it’s just like all in one function. [...] And then you also
have an or statement, but like within the or statement, you
also have like a string=?, but I have a helper function for
that, so I think that’s like that only main difference.

While the student described the presence of a helper function,

she does not identify either an explicit task that connects to the

helper functions, or an explicit purpose for the helper. This was

more a sense of decomposition for the sake of decomposition, and
less about the delegation of identified tasks to helpers.

Leverage Multiple Representations of Functions

Given the design recipe, we were not surprised to see comments

on htdp templates. At first, we were unsure what to do with them:

students spoke of templates with different depth, but a unifying

core skill was not immediately apparent. Only after reviewing many

unclustered comments from a top-down perspective based on htdp

did a unifying skill emerge: how students worked across the multi-

ple representations of functions inherent in the design recipe.

The design recipe steps exploit and relate multiple representa-

tions of functions: students describe a function through its input

and output types (a.k.a. domain and range), samples of input/output

pairs (test cases), and the symbolic code that captures the detailed

implementation. Ideally, the design recipe helps students learn how

to leverage these different representations, as well as the template

that bridges the types and the symbolic code, to help think through

how to develop a function.

Some students, such as st3 in the excerpt below, worked through

the recipe representations mechanically, while others, such as st6,

conveyed relationships among the representations:

st3: because it’s processing a list of ad, [we used] a cond

statement [...] because earlier when we defined the list of
ad, we said it had to be either empty or it had to be a cons

statement (a list).
st6: I realize I was writing the check-expects (tests) to
satisfy the function that I wrote rather than writing the
function I wrote to satisfy the check-expects which I think
sometimes you can write a bad program and then just have
the check-expects satisfy that program.

st6’s higher-level reflection about tests driving function design

suggests a more cohesive understanding of the knowledge and

use of htdp components. Most template-related comments thus

clustered under a SOLO progression about interactions between

the information from different representations. Without reflecting

on the practices of the curriculum top-down, we are not convinced

we would have identified this progression just from the data.

5.2 Calibrating the SOLO Levels

We later adjusted some of our SOLO-level definitions so that each

skill drew a consistent boundary between syntactic and semantic

understanding: syntactic understanding is at most multistructural
within each skill; each relational level requires some semantic under-

standing of the corresponding concept. For example, in methodical
choice of tests and examples, there is an increase in the sophistication
of the mechanical application of testing from prestructural to multi-
structural. Initially, knowledge of how to write or use tests is absent

(prestructural); then, at unistructural, there are instances of writing
tests, yet no deeper understanding of the purpose of doing so (e.g.

writing tests because the problem description says so — this shows

testing merely as the idea of applying a construct without any

meaningful intent); at multistructural, there is a recognition of the

purpose of each test, but without a cohesive understanding of what

the collection of tests achieve in the context of the problem. This

cohesive understanding is achieved in the relational level, where
the collection of tests and examples are understood in the context

of satisfying, for example, the space of possible input-output pairs

for the problem. The relational level for each skill establishes logi-

cal connections between the conceptual artifacts or schemas from

prior levels. This distinguishes our taxonomy from others, such as

Izu et al.’s [7], which does not require semantic understanding to

reach a relational level. A principled alignment such as this seems

an important step in developing a multi-strand SOLO taxonomy.

Otherwise, separate taxonomies per strand would suffice.

6 ASSESSING THE TAXONOMY

The taxonomy in table 3 arose from our trying to make sense of

isolated comments that students made during session 1. We did not

Table 4: Analysis of Student Skill Progressions. The abbrevi-

ated headings correspond to the 4 design skills in the taxon-

omy: MTE =Methodical choice of tests and examples, WFB =

Writing and evaluating function bodies, DTC =Decomposing
tasks and composing solutions, and LFR = Leverage multiple
representations of functions.

Student Session MTE WFB DTC LFR

st1

1 U M U U

2 R R M U

3 U M M U

st2

1 R M U M

2 M M - U

3 U R M M

st3

1 R R R R

2 R R R -

3 R R R R

st4

1 M R M M

2 R R U M

3 M R M M

st5

1 R M U U

2 R R R U

3 R R R M

st6

1 R R R R

2 M R R M

3 R R R M

look at transcripts from sessions after the first one while developing

the taxonomy. We had also considered data from only 6 of the 13

students when developing the taxonomy. These raise a key question

about the applicability of the taxonomy:

Does every session transcript from each student yield a
meaningful SOLO rating in each of the taxonomy strands?

This question captures one form of validity for our taxonomy. Our

study protocol asked students about their approach to testing, so

we expected every transcript to address testing. The other three

strands, however, were not directly discussed, meaning that there

was the potential for students to omit discussing those issues.

Table 4 shows the results of applying the taxonomy to the 18 tran-

scripts in the original sample (6 students, 3 sessions each). The let-

ters in each cell refer to SOLO levels ([P]restructural, [U]nistructural,

[M]ultistructural, [R]elational); a dash (-) means the student never

mentioned that strand. The three-letter column headings abbreviate

the separate skill strands of the taxonomy from table 3.

Each author coded the 18 transcripts individually. We then dis-

cussed all of the table entries in detail, refining our interpretation of

the SOLO levels as needed. As we discussed all scorings as a team,

we did not compute inter-coder reliability. When a student made

comments at different SOLO levels for the same skill strand (for a

single session), we made a holistic judgment about the student’s

level, weighing frequency and depth of the comments at each level.

We also checked the taxonomy against the transcripts from the

remaining 7 study participants; we omit data on these for sake of

space, but the taxonomy applied similarly to those transcripts.

6.1 Assessing Our Multi-Strand Approach

Reflecting on the table—both its immediately visible patterns and

our interpretations of those patterns—yielded observations about

using multi-strand taxonomies to track design skills.

Observation 1. Students can be at different levels for different
skills at a given time.

While the design skills are interrelated, our analysis suggests that

students do not necessarily progress through them simultaneously.

For example, st1 exhibits knowledge of decomposing tasks and
composing solutions at the multistructural level by session 3, but

still struggles with relating design-recipe components. Her data

suggests a mechanical use of the design recipe, without reflecting or

leveraging recipe components to inform the design of her programs.

This is part of the argument supporting a multidimensional

taxonomy: students improve in some skills while staying flat in

others. Our taxonomy gives us a much more nuanced reading than

previous taxonomies would that conflate multiple aspects.

Observation 2. Skill strands vary in the nature of mechanical
application and requirement of abstract-level thinking.

Writing and evaluating function bodies (WFB) is the only strand

in which no student was ever at the unistructural level. There are

several plausible explanations for this. By the time we started in-

terviews (week 3 of the course), students had already taken (and

passed) the first exam, which covered programming over lists of

atomic data. Correct solutions to both the exam and the home-

work that students completed prior to the first session would have

required code that satisfied the multistructural criteria.
One can also argue that writing and evaluating function bodies is

the most mechanical of the design skills, at least up through themul-
tistructural level. Assuming cognitive theories about copying code

schemas are correct [15, 16], then a student achieves multistructural

performance simply by retrieving and reproducing an applicable

schema (perhaps with the help of documentation or APIs). This

requires less thought about the specific problem than does think-

ing about test coverage or task decomposition, and less synthesis

about the design process than the multiple-function-representations
strand. In decomposing tasks and composing solutions, for example,

multistructural requires seeing features of a problem in “chunks”

that manifest in code: this cannot be achieved by simple recall.

The progression from multistructural to relational in writing
and evaluating function bodies does have some depth, as students

must shift from working with nested expressions syntactically to

doing so with semantic understanding. This goes beyond recall

and reproduction of code patterns, and hence requires some real

understanding. But shifts at the earlier levels don’t seem to require
more from the student than having learned richer code patterns to

copy. A similar criticism applies to Izu et al.’s taxonomy [7].

One possible takeaway from this is that we (as a research com-

munity) should articulate the actual (cognitive) skills that underlie

our progressions, and make sure new skills are actually required to

progress through levels. Another is that we need to use research

protocols that look beyond students’ final solutions to include their

thought processes. While we can accurately determine failure to

achieve a higher level through solutions alone, evidence that wit-

nesses a level can be more elusive with solutions alone.

7 ASSESSING STUDENTS’ DESIGN

PROGRESSIONWITH THE TAXONOMY

We developed this taxonomy as part of a larger project to study

how students’ design skills evolve over a (sequence of) courses. We

envision two broad uses of this taxonomy to this end:

• Fix problems that students will attempt at multiple points

in a course, apply the taxonomy to gauge students’ levels at

each point, then check whether there is a linear progression

(or at least no regression) in student skills over time.

• Give a sequence of increasingly difficult problems across the

course, apply the taxonomy to gauge students’ levels at each

point, then examine whether students can scale their skills

to new problems, or whether their skills break down at a

certain problem complexity.

The study in which we gathered our data (section 4) was of the

second type. We can thus examine Table 4 for insights into how

students’ skills evolved across our study problems.

Table 4 shows that students do sometimes lose ground in later

sessions. There are several plausible reasons for this. Students may

not have internalized the skills they seemed to display in an earlier

session. For example, a student might have described test cases as

covering a problem space in one week without explicitly internaliz-

ing this as good practice, so such comments don’t arise in a later

session. Finally, the study problems themselves (not to mention

the interview questions) might bias students towards answers that

appear to justify a level. This last concern is important enough to

warrant its own discussion (section 8).

8 DESIGNING PROBLEM PROGRESSIONS

AROUND THE TAXONOMY

Reflecting on the data in Table 4 illustrated ways in which our

selection of study problems could impact where students end up on

the taxonomy. For example, in session 1 we had students discuss

a problem for which an earlier problem provided a useful helper

function. This may have prompted some students to make com-

ments that rated higher on task-decomposition than had students

solved the problem unscaffolded (though we note from our data

that some students were still unistructural despite this scaffolding).

Testing is another interesting case: several students received

a lower testing rating in session 3 (open-ended Rainfall) than in

session 2 (a graded homework). Testing is a significant factor in

homework grades, leading students to include it in homework so-

lutions. The lack of discussion of testing in the open-ended session,

however, suggests that some students do not yet see testing as

part of their design process, even though they can write good tests

when asked (based on session 2). Put differently, students may have

skill with a design technique, but not the inclination to apply that

skill. Our taxonomy conflates these issues, leaving it to assessment

designers to create problem sets that tease apart these differences.

Overall, the data in Table 4 humbled us about the subtleties of

designing sequences of problems that would allow us to draw con-

clusions about students’ design progress using our (or we suspect

others’) taxonomy. Problem statements should be reviewed for bias

relative to taxonomy levels: do aspects of the problems steer stu-

dents towards particular levels? Do other questions remove this

bias, to help the instructor gain a clearer assessment of the students’

skill level? The issue of designing problems that lend towards par-

ticular SOLO levels has been raised in other SOLO papers [9, 21],

though these works mostly focused on categorizing students’ code

responses and don’t tease out the more specific skills that drive

students’ development of their code.

9 DISCUSSION AND FUTUREWORK

Our work to date has yielded two artifacts: (a) a multi-strand SOLO

taxonomy capturing different performance levels within a set of

design skills, and (b) a collection of factors that students raise when

discussing designs. The idea of a multi-strand taxonomy is one of

the main contributions of this paper. A multi-strand taxonomy is

valuable because it captures inter-related nuances while respecting

that different skills develop in different ways. Exploring how and

when a curriculum prepares students to work at the various levels

of each skill strand drives home these nuances. A student could
perform at a relational level in testing from very early in a course

(even simple programs over numbers can have interesting boundary

conditions), whereas the relational level in task decomposition

requires more complex (multi-task) problems that would appear

only later in a course. Contrasting when students can versus do
achieve various SOLO levels will be part of the student performance

analysis we are doing in ongoing work.

A multi-strand taxonomy needs to align or relate the strands in

some way, otherwise it is no more than a collection of independent

taxonomies organized into a table. This paper discussed one factor

for aligning strands: all of our relational levels require students

to display some understanding of the semantics underlying the

corresponding strand concept, rather than just working with the

skill syntactically. Given that this taxonomy deals with producing

programs, syntax versus semantics is a useful concept aroundwhich

to align strands. We suspect there are similar opportunities to align

strands based on cognitive factors, though we are not yet sure what

those would look like for program design.

Our work also raises questions about how to use a SOLO taxon-

omy to assess progress over a longer period than a single assessment

(prior SOLO papers report only on single assessments). While one

could give (essentially) the same problem multiple times and see

whether students achieve higher performance levels, in our overall

study, the problems we give the students either rise in complexity

or remove some of the scaffolds present in earlier problems. Un-

der this model, drops in SOLO level from one problem to another

highlight the limits of students’ skills. We suspect that some of

the drops observed in our data reflect which design skills students

have internalized, while others reflect the problem complexity at

which students can apply the skills. We will continue to explore the

meaning of drops in levels as we apply the taxonomy to more data.

Our SOLO taxonomy largely emerged from the data we gathered

in the first session of our study, as we tried to organize and code

comments from students’ design interviews (we filled in some gaps

based on our understanding of htdp). Building our taxonomy from

student data fundamentally makes our taxonomy descriptive rather

than normative. The described progressions are not a prescriptive

standard around how program design skills should evolve, however,

it provides a framework with which to (1) evaluate how students

evolve in the identified skills in practice, (2) construct assessments

that witness to various skill levels, and (3) evaluate curricula that

teach these skills (while the taxonomy is influenced by htdp, the

skills identified are certainly not limited to htdp or curricula that

use functional programming). We have begun to validate the tax-

onomy, reporting here on the results of using it to categorize data

from students beyond those from whose comments we derived the

taxonomy. Another important form of validation will involve ex-

pert assessment: we plan to get experienced htdp instructors from

other institutions to rate the session transcripts without showing

them the taxonomy, checking whether our taxonomy differentiates

students in similar ways to human graders.

Finally, we want to account for issues that students raised during

interviews which did not lend themselves to SOLO-esque progres-

sions. Table 2.b summarizes these issues, which include concepts

such as readability, efficiency, and value judgments about the design

techniques covered in the course. Some of these issues could affect

which SOLO level students demonstrate in some of our skill strands

(a student who has a negative perception of testing, for example,

seems less likely to take testing seriously enough to demonstrate

a higher SOLO level on open-ended assessments). We expect that

these non-SOLO factors will be important as we look to interpret

drops in demonstrated skill levels across multiple assessments.

A INTERVIEW QUESTIONS

(Wording has been truncated slightly for space)
Code-writing exercises:

(1) Was the problem statement clear to you when you read it?

(2) Why did you choose your test cases? Do you think you’ve

covered all possible scenarios with your tests?

(3) What did you think of doing first? Were you reminded of a

construct in general or a general structure of solution that you

thought would be useful?

(4) Have you previously seen problems that resemble this one?

(5) Did you feel stuck at any point while working on this problem?

(6) Describe the approach that your code takes to solving the prob-

lem. [If they just read the code, re-prompt]

(7) Were the program design techniques taught in class helpful to

you when solving this problem?

(8) Did you use design techniques that weren’t taught in class?

(9) Are there any constructs/commands of the programming lan-

guage that you find difficult or confusing to use?

(10) What issues make programming constructs difficult to use - for

example, the keyword used, the syntax, the examples given in

class that uses it, the documentation for the construct, [etc]?

Solution comparison:

(1) What differences do you notice between the solutions?

(2) Identify strengths and weaknesses in each of the solutions.

(3) Given these solutions, which of these do you prefer and why?

(4) Is there a solution you find confusing or hard to understand?

ACKNOWLEDGMENTS

Kayla DesPortes and Sebastian Dziallas offered valuable advice on

qualitative methods and analysis. Work supported by US National

Science Foundation grant nos. 1116539 and 1500039.

REFERENCES

[1] Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thiemann, Stefan

Wehr, Martin Gasbichler, Michael Sperber, Marcus Crestani, Herbert Klaeren, and

Eric Knauel. 2008. HtDP and DMdA in the Battlefield: A Case Study in First-year

Programming Instruction. In Proceedings of the 2008 International Workshop on
Functional and Declarative Programming in Education (FDPE ’08). ACM, 1–12.

[2] J. B. Biggs and K. Collis. 1982. Evaluating the Quality of Learning: the SOLO
taxonomy. Academic Press.

[3] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis. SAGE.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2004. The TeachScheme! Project: Computing and Programming for Every

Student. Computer Science Education 14, 1 (Jan. 2004), 55–77.

[6] David Ginat and Eti Menashe. 2015. SOLO Taxonomy for Assessing Novices’

Algorithmic Design. In Proceedings of the ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, 452–457.

[7] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design

Skills in Novice Programmers Using the SOLO Taxonomy. In Proceedings of the
2016 ACM Conference on International Computing Education Research (ICER ’16).
ACM, 251–259.

[8] Päivi Kinnunen and Beth Simon. 2012. Phenomenography and grounded theory

as research methods in computing education research field. Computer Science
Education 22, 2 (June 2012), 199–218.

[9] Raymond Lister, Tony Clear, Simon, Dennis J. Bouvier, Paul Carter, Anna Eck-

erdal, Jana Jacková, Mike Lopez, Robert McCartney, Phil Robbins, Otto Seppälä,

and Errol Thompson. 2010. Naturally Occurring Data As Research Instrument:

Analyzing Examination Responses to Study the Novice Programmer. SIGCSE
Bull. 41, 4 (Jan. 2010), 156–173.

[10] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Chris-

tine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Programmers and

the SOLO Taxonomy. In Proceedings of the ACM Conference on Innovation and
Technology in Computer Science Education (ITICSE ’06). ACM, 118–122.

[11] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented Instruc-

tion and Its Influence on Problem Decomposition and Solution Construction. In

Proceedings of the ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’07). ACM, 151–155.

[12] Peter L. Pirolli and John R. Anderson. 1985. The Role of Learning fromExamples in

the Acquisition of Recursive Programming Skills. Canadian Journal of Psychology
39 (1985).

[13] Norman Ramsey. 2014. On Teaching *How to Design Programs*: Observations

from a Newcomer. In Proceedings of the 19th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’14). ACM, 153–166.

[14] Carol Righi, Janice James, Michael Beasley, Donald L. Day, Jean E. Fox, Jennifer

Gieber, Chris Howe, and Laconya Ruby. 2013. Card Sort Analysis Best Practices.

J. Usability Studies 8, 3 (May 2013), 69–89.

[15] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989).
[16] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A

Comparison of Novice and Intermediate Student Programmers. Hum.-Comput.
Interact. 6, 1 (Mar 1991), 1–46.

[17] Shuhaida Shuhidan, Margaret Hamilton, and Daryl D’Souza. 2009. A Taxonomic

Study of Novice Programming Summative Assessment. In Proceedings of the
Australasian Computing Education Conference (ACE ’09). Australian Computer

Society, Inc., 147–156.

[18] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms

and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858.

[19] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers. In

Proceedings of IJCAI.
[20] Errol Thompson. 2007. Holistic Assessment Criteria: Applying SOLO to Program-

ming Projects. In Proceedings of the Australasian Computing Education Conference
(ACE ’07). Australian Computer Society, Inc., 155–162.

[21] Jacqueline Whalley, Tony Clear, Phil Robbins, and Errol Thompson. 2011. Salient

Elements in Novice Solutions to Code Writing Problems. In Proceedings of the
Australasian Computing Education Conference (ACE ’11). Australian Computer

Society, Inc., 37–46.

[22] Jacqueline Whalley and Nadia Kasto. 2014. A Qualitative Think-aloud Study

of Novice Programmers’ Code Writing Strategies. In Proceedings of the ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’14). ACM, 279–284.

[23] Jacqueline L.Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins,

P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading

and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO

Taxonomies. In Proceedings of the Australasian Computing Education Conference
(ACE ’06). Australian Computer Society, Inc., 243–252.

[24] Jed R. Wood and Larry E. Wood. 2008. Card Sorting: Current Practices and

Beyond. J. Usability Studies 4, 1 (Nov. 2008), 1–6.

http://www.htdp.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Course: How to Design Programs
	4 Data Collection
	4.1 Logistics
	4.2 Problem Selection Rationale
	4.3 Participants

	5 Developing an Analysis Framework
	5.1 Identifying Skills and Skill Progressions
	5.2 Calibrating the SOLO Levels

	6 Assessing the Taxonomy
	6.1 Assessing Our Multi-Strand Approach

	7 Assessing Students' Design Progression with the Taxonomy
	8 Designing Problem Progressions Around the Taxonomy
	9 Discussion and Future Work
	A Interview questions
	Acknowledgments
	References

