
Qualitative Analyses of Movements Between Task-level and
Code-level Thinking of Novice Programmers

Francisco Enrique Vicente Castro

Worcester Polytechnic Institute

fgcastro@cs.wpi.edu

Kathi Fisler

Brown University

kfisler@cs.brown.edu

ABSTRACT

Cognitive theories of how programmers produce code suggest

that novices’ approaches are primarily driven by the retrieval of

previously-learned plans. These plans can be high-level, focusing

on task decomposition and composition, or low-level, focusing on

code implementations. These theories, however, do not describe

how novices move between high-level tasks and low-level code,

especially when faced with novel problems. Understanding these

transitions can help concretely tease out why and where novices
struggle and how they use their knowledge of plans and design

techniques when they get stuck.

We studied this by conducting think-alouds with CS1 students at

two universities as they solved multi-task programming problems

with unfamiliar components. Our analysis paid particular attention

to a series of design techniques that the students had been explic-

itly taught in their respective courses. We identified patterns of

high- and low-level thinking that relate to students’ success on the

problems, and propose a concrete framework of high- and low-level

work that summarizes the transitions that we observed.

CCS CONCEPTS

• Social and professional topics→ Computer science educa-

tion; CS1; • Human-centered computing→ User studies.

KEYWORDS

Program design, plan composition, rainfall, design recipe

ACM Reference Format:

Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analy-

ses of Movements Between Task-level and Code-level Thinking of Novice

Programmers. In The 51st ACM Technical Symposium on Computer Science
Education (SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.3366847

1 INTRODUCTION

Most theories of how novice programmers design solutions for pro-

gramming problems draw from plan-based models of programming.

Plans refer to the organization of tasks or of code that relate to the

tasks of a problem [3, 15]. Problem tasks refer to problem compo-

nents that need to be addressed in order to complete a solution; for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366847

example, a problem that asks to compute the average of a list of

numbers would have the following tasks: (1) sum the list-values,

(2) count the list-values, and finally (3) divide the sum by the count.

Programmers either (a) retrieve plans from memory top-down or

(b) develop plans bottom-up to generate new plans [13, 14].

These theories, however, do not describe how novices move be-

tween a problem’s high-level tasks and the tasks’ low-level code

implementations. Prior work has shown that while novices think in

terms of a problem’s core tasks, they struggle with decomposition

and composition issues around their solutions [2]. Our work ex-

plores this interplay between task- and code-level thinking among

novice programmers within the context of two CS1 courses that

teach a systematic design-process called the htdp Design Recipe
[6] (section 3) for solving programming problems. Our courses of

study provide an interesting context: when students struggle with

problems, they have design techniques to fall back on. These may

have an impact on how students think around the problem’s tasks

and their code. We thus focus on the following research questions:

RQ 1. What patterns of movements between high- and low-level

thinking do we see among our students?

RQ 2. How do students’ patterns of task- and code-level thinking

relate to their success on our programming problems?

RQ 3. When students get stuck on a problem, what do they do and

how do they use the htdp design recipe as part of getting unstuck?

2 RELATEDWORK

Pirolli et al.’s studies on novices writing recursive programs found

that programmers rely heavily on prior knowledge of solutions

when developing new programs [11, 12]. Spohrer and Soloway’s

findings from their study of students’ think-aloud protocols echo

Pirolli’s findings, suggesting that students use both prior knowledge

of programming plans, as well as relevant non-programming plans

to write code [16]. Spohrer and Soloway also found that most of

novice programmers’ mistakes come from plan composition: novices
struggle with composing program plans to form working solutions.

Rist built on these theories by proposing a model that describes

two states novice programmers enter when solving a programming

problem [13, 14]. Novices enter a plan-retrieval state when they

have a solution to a similar programming problem in memory: they

retrieve the solution and reproduce the code in top-down fashion.

When they don’t have a solution to retrieve, novices enter a plan-
creation state wherein they identify a core computation called a

focus (typically a core computation in the problem such as summing

in an averaging problem) and implement code for the focus, building

on this focus bottom-up until a working solution is developed. None

of these theories describe how novices navigate between tasks and

code, especially when faced with programming problems that have

https://doi.org/10.1145/3328778.3366847
https://doi.org/10.1145/3328778.3366847

both familiar and unfamiliar components. In this context, novices

would need to navigate their use of prior plans and new tasks, both

of which they need to build code for. This is the dynamic we explore

in this work.

More recent studies have also explored how students engaged in

plan-composition when explicitly taught planning strategies, such

as de Raadt et al.’s work on teaching students a "strategy guide"

for integrating plans [5]. Muller et al. talks about pattern-oriented

instruction in which students are taught to attach labels to program-

ming patterns and to look for common patterns across problems

[10]. Our work additionally looks at how students navigate between

tasks and code in the context of having a multi-step design recipe
for approaching problems, particularly in situations when they get

stuck in their programming process, perhaps due to not having

plans or patterns to retrieve for novel problem-tasks.

Historical Context of thisWork. This work follows our existing
line of work on understanding the programming processes of CS1

students taught with the htdp curriculum. In an earlier exploratory

study [2], we analyzed video captures of students’ IDE as they

worked on a multi-task problem and found that while students

primarily work in terms of problem-tasks, they struggled to decom-

pose and compose the code around these tasks. Students also used

familiar code patterns verbatim without adjusting the patterns to

the need of the tasks. That study, however, lacked richer data on

which observations can be drawn about how students were thinking

around the problem, why they struggled in their process, and how
they tried to get unstuck. In a follow-up study [7], we collected

think-aloud data as students solved the Rainfall problem [15] and

found that students who connected specific parts of their solutions

to specific tasks and maintained those connections throughout

their process produced more correct code. This is a key finding in

this work as well; additionally, our work considers what happens

around task- and code-level thinking when students get a problem

with entire tasks that they have not seen before.

3 COURSE CURRICULUM

How to Design Programs [6] is an introductory computing curricu-

lum that teaches students a multi-step Design Recipe (dr) for de-
signing programs based on the structure of the input data. Given

a programming problem, students are taught to work through a

progression of steps:

(1) Data Definitions: Identify and define the structure of the

input data.

(2) Examples of Data: Write examples of the input data (as

executable code).

(3) Signature and Purpose Statement: Write the name, input

types, and output type (the signature) for a function that will

solve the problem and a brief summary of the function’s goal

(the purpose statement).
(4) Input—Output Examples: Write concrete examples (as ex-

ecutable test cases) of what output the program should pro-

duce on specific inputs.

(5) FunctionTemplate: Using the data definition as a reference,
write a skeleton of the function body (the template) that fully
traverses the input data. The template is specific only to the

type of the input data, not to computations within a given

; RECIPE STEP 1: THE DATA DEFINITION
; A list -of-string is
; - empty, or
; - (cons string list -of-string)

; RECIPE STEP 2: EXAMPLES OF DATA
(define animals (list "bunny" "dog" "kitty"))

; RECIPE STEP 4: THE TEST CASES
; check -expect captures a test case, with both
; the expression to run and its expected answer.
(check -expect (has -dog? empty) false)
(check -expect (has -dog? animals) true)

; RECIPE STEP 5: THE TEMPLATE
; The ellipses get filled with details from the
; specific problem upon reaching STEP 6.
; (define (func alos)
; (cond [(empty? alos) ...]
; [(cons? alos)
; ... (first alos)
; ... (func (rest alos)) ...]))

; RECIPE STEP 3: THE SIGNATURE AND PURPOSE
; has -dog? : list -of-string -> boolean
; Produces true if "dog" is in the list

; RECIPE STEP 6: THE FINAL FUNCTION
(define (has -dog? alos)

(cond [(empty? alos) 0]
[(cons? alos)
(or (string=? (first alos) "dog")

(has -dog? (rest alos)))]))

Figure 1: A design recipe walk-through on a problem to

find the string "dog" in a list of strings. Racket uses semi-

colons for single-line comments; cond is a construct for

multi-armed if-statements. Racket naming conventions use

hyphens to separate words, rather than camel casing.

problem, allowing the same template to be reused across

multiple functions on the same type.

(6) Function Definition: Fill in the template with problem-

specific details.

(7) Testing: Run the function on the test cases, refining the

function and adding tests as necessary.

Figure 1 shows a complete walk-through of the dr steps on a sam-

ple problem; the top-to-bottom ordering of the code reflects how a

typical student submission would look. We present code in Racket

(a variant of Scheme), as that is the language used in the courses

we studied and the htdp textbook [6]. An htdp course applies

the recipe to increasingly rich data structures as the course pro-

gresses: from atomic data (e.g. numbers and strings), to compound

data (structs), to lists of atomic data and structs, and binary and

n-ary trees. Additional topics covered in htdp courses may include

higher-order functions, accumulator-patterns (building partial re-

sults in parameters), and stateful variables. The dr steps provide a

form of scaffolding [1] that leads a student from a prose-based prob-

lem statement to a working program. The progression from data

definitions to examples to code move the student through different

representations of the problem, providing a form of concreteness

fading [8] as students progress towards a symbolic-form solution.

4 STUDY DESIGN AND DATA COLLECTION

We chose two programming problems with multiple subtasks and

had students from htdp-based CS1 courses at two universities

(both selective, private, and in the USA) work on each one. The first

problem (Rainfall) consisted of subtasks that students had previ-

ously coded in other contexts, but not previously composed in this

way. The second problem (Max-Temps) was harder, involving sub-

tasks that students had not previously seen but that were solvable

(though challenging) using the htdp process as covered to date in

each course. Problem details are provided later in this section.

The htdpCourse Instances1. The two htdp courses in our study

varied in topic orderings and concept emphasis. We collected data

from course1 in Spring 2018 and from course2 in Fall 2018. At the

time we ran our studies, each course had covered the basic design

recipe, structures, lists, trees, and higher-order functions. course1

spent the week prior the study covering higher-order functions (map,

filter) and was covering accumulator-style programming during
the week of the study sessions. course2, in contrast, had spent at

least three weeks with higher-order functions (map, filter, fold)

before the study and was scheduled to cover accumulator-style

programming after the scheduled study sessions; study sessions for

course1 were done about a week before final exams, sessions for

course2 about 2 weeks before final exams. course1 ran at intense

pace for 7 weeks, course2 ran on a 14-week semester.

Participants. Instructors of both courses publicized the study to

their students. Interested students provided information on their

intended major, prior programming experience, and an estimate

of their current course grade on a volunteer survey
1
. A total of 13

course1 students and 84 course2 students signed up for the study.

From each participant pool, we selected students based on their

availability to participate in study sessions (sessions were 2 hours

total per student) and their self-reported course performance (A,

B, C, D), resulting in 12 course1 and 10 course2 participants. The

following table summarizes the number of students self-reporting

each grade, for each course; (M/F) indicates self-reported gender.

Course

Self-estimated course grade

A B C D

course1 2(M), 3(F) 1(M), 4(F) - 2(F)

course2 3(M), 1(F) 4(M) 2(F) -

Logistics. Each participant did two 1-hour sessions, the first on

Rainfall and the second on Max-Temps. Within a session, students

had 30 minutes to work on the problem in think-aloud fashion. A

retrospective interview followed, during which students described

their process and responded to interviewer observations from the

think-aloud [17]. Students worked on their own computer (they

could open notes they deemed relevant to the problem) and used the

course’s standard programming environment. We audio recorded

all sessions and collected students’ solutions and scratch work. The

first author conducted all of the sessions. Neither author was on the

staff for either course, or even affiliated with the course2 university.

Each participant received USD 20 per session.

1
The course syllabi and survey are at: https://github.com/franciscastro/sigcse-2020

The Study Problems. The exact wordings for each problem fol-

low, along with its most common solution approaches and our

rationale for including it in the study.

Rainfall. Design a program called rainfall that consumes a list of
numbers representing daily rainfall readings. The list may contain
the number -999 indicating the end of the data of interest. Produce the
average of the non-negative values in the list up to the first -999 (if it
shows up). There may be negative numbers other than -999 in the list
(representing faulty readings). If you cannot compute the average for
whatever reason, return -1.

Common solution structures:

(1) Clean-first: Produce an intermediate data structure of non-

negative values truncated at the sentinel; sum and count the

cleaned data, check for zero-division, and finally compute the

average.

(2) Process-multiple: Traverse the input twice, once to sum and

once to count, ignoring negatives and halting at the sentinel

(or the empty-list); then check for zero-division and compute

the average.

(3) Single-traversal: Traverse the input once, updating sum and

count on each nonnegative input, then check for zero-division

and compute the average upon reaching the sentinel (or the

empty-list).

Rainfall provides an interesting context for our study: students

have done most of the Rainfall tasks separately — summing, count-

ing, and filtering lists (based on some criterion); they have not done

list-problems that terminated at a specific value (rather than the

end of the list) that may or may not appear. A main challenge in

Rainfall is composition, as the problem is not itself structurally re-

cursive (i.e. each of sum and count are straightforward applications

of the htdp template, but the rainfall function needs to decompose

these computations into their own subtasks) and students have not

composed the task-components together in a solution.

Max-Temps. Imagine that we have lists containing a combination of
numbers and the string "new-day". The numbers represent temperature
readings as taken by a sensor or weather monitoring device. The "new-
day" string is sent at the start of each new calendar day. Design a
program max-temps that takes one of these lists and returns a list of
numbers representing the max temperature for each day. If the input
list is empty, return empty.

Common solution structures:

(1) Reshape-first: Reshape the input into a list-of-lists that omit

the delimiters, then recur over the outer list to compute the

max of each inner-list.

(2) Collect-first: Collect sublist elements until the delimiter, then

find the max of the collected elements before moving to the

next sublist.

(3) Process-until: Find the max between consecutive list elements

as the list is traversed. When a delimiter is found, concatenate

the max onto the result of processing the rest of the input.

Max-Temps is more complex than Rainfall. Its viable solutions re-

quire tasks students have not coded—or even seen—in class. Reshape-
first requires restructuring the input into a list-of-lists. While nested

lists are new to students, the design recipe templates handle them

in similar ways to other nested data structures that students had

used. Process-until requires keeping track of the current sublist’s

max either in an additional parameter (which course1 students

may have seen, given the study timing) or by modifying the head

of the input mid-traversal. Finally, while functions over lists typi-

cally recur on the tail of the list, Max-Temps solutions may require

recurring on a modified suffix (e.g., the one after the first sublist).

5 ANALYSIS AND DISCUSSION

Our research questions (section 1) revolve around understanding

students’ transitions between task- and code-level thinking as they

solve problems, as well as how they navigate with their design

techniques to get unstuck when struggling with the problems.

5.1 Framework: Task- and Code-level Thinking

Our work aims to capture how students think around problem-

tasks and code-implementations, and their use of the dr within this

dynamic. To do this, we randomly selected half the students from

each cohort, from each self-estimated course grade: 6 course1 (2

As, 2 Bs, 2 Ds) and 5 course2 (2 As, 1 B, 2 Cs) students. We then

coded [4, 9] their transcripts, field notes, and code by constructing

qualitative narratives, similar to Whalley and Kasto’s descriptive

accounts of students’ programming [17], tagging student comments

based on the following guide questions (summarized for space):

(1) How do they think through the tasks before starting to re-

trieve code patterns?

(2) How do they interleave thinking about tasks and code?

(3) What tasks or code patterns did they get stuck in?

(4) Do they return to thinking about tasks once they start im-

plementing them in code, whether or not they get stuck?

(5) How do they try to get unstuck?

(6) When do they use the design recipe or its components?

(7) How do they perceive the role of the design recipe?

What emerged from our coding was a descriptive conceptual

framework of what students did pertaining to implementation- and

task-level thinking. We describe each of these levels in turn.

Task-level thinking concerns the identification and description

of a problem’s task-components and involves the following actions:

• Identifying and describing tasks: Describing tasks in terms

of their role in the overall problem; novices may elicit tasks

from the problem-statement or relevant plans they retrieve

• Describing relationships between tasks: Describing how tasks

relate to each other, such as how tasks’ outputs relate to

other tasks’ inputs, or the ordering of the tasks (perhaps

informed by their input-output relationships)

• Plan-retrieval for familiar tasks: Retrieving plans for familiar

problem-tasks that novices have in memory

Implementation-level thinking is concerned with concrete code

or code patterns students write to actualize the tasks and involves

the following actions:

• Implementing code: Writing the code that novices retrieve,

or modifying code to fit it within the problem context

• Composing code: Putting together relevant code in a way that
solves or actualizes components of a solution

• Plan-retrieval of task-relevant code: Retrieving code patterns

for familiar tasks that novices have in memory; may come as

built-in operations and functions, or entire code structures

such as dr templates or previously-implemented code

The following excerpt illustrates a course2 student touching on

both high-level tasks and the low-level code-patterns he retrieved.

He describes an overall plan for Rainfall: he concretely describes the
tasks he identified from the problem, relates tasks to each other by

describing the ordering of the tasks and the output of some tasks,

and retrieves code patterns for familiar tasks:

course2-stud4: I’m thinking [the] best way to approach [Rain-
fall], you take your list of numbers, you get all the numbers
before minus 999, create a new list from that [then] take out all
the non-negative numbers and then [do] foldrwith the average.
Foldr to find the sum and then divide that by the length
We used this conceptual framework in coding and describing

how the rest of the students navigated the program-design process.

We used the dot-bulleted items to tag student comments as related to

task- or implementation-level. We then used our guide questions to

construct qualitative narratives that explain relationships between

actions (e.g. how descriptions of task-relationships led to code

compositions), citing code changes captured in field notes and

students’ own code and scratch work as supporting observations.

5.2 RQ1: Movements Between Tasks and Code

Our first RQ asks about patterns of student movement between

high-level (HL) tasks and low-level (LL) code as they solved our

programming problems. We found three main patterns of task-code

transitions in our data:
2

Cyclic. This pattern is characterized by a back-and-forth move-

ment between task- and code-level descriptions of the components

of a solution. Cyclic students concretely describe problem-tasks

(HL) and describe code they will use to implement those tasks

(LL). The composition of their code (LL) is guided by the concrete

relationships they establish between tasks (HL), for example, by

describing how the output of one task is used as input for another.

Their descriptions of tasks are often within the context of an overall

plan for a solution (e.g. truncate at the sentinel first, then remove neg-
atives, then compute average); the connections they make between

tasks fill the gaps between tasks, making a plan more complete.

Code-focused. These students primarily jump into writing code

for the tasks they identify. They identify tasks on-the-fly as they

program, often without concretely describing how the tasks relate

to each other. They focus on retrieving and implementing code for

a task at-hand, then add code for whichever tasks they shift their

focus to next. Their descriptions of plans are often fragmented; they
have a list of tasks they identified, but no concrete descriptions of

the connections between those tasks.

One-way. Students who exhibit this pattern often identified a

high-level plan for a solution early on in their process, then fo-

cused on implementing code without going back to their high-level

plan. Their process often shows characteristics observed from code-
focused students: they have fragmented descriptions of plans later

2
Illustrative narratives are at: https://github.com/franciscastro/sigcse-2020

Table 1: Number of students implementing various solu-

tion approaches, grouped by Task-Codemovement patterns.

C/F in brackets indicate whether students’ final code were

[C]lose (minor errors on some tasks) or [F]ar from a correct

solution (missing tasks, major implementation errors).

(a) Rainfall solution approaches: CleanF - Clean-first, PMult -

Process-multiple, STrav - Single-traversal, NCP - No clear plan.

Pattern Approach

Students

Course1 Course2

Cyclic

CleanF 4 [C] 5 [C]

PMult 2 [C] 1 [C]

STrav 1 [C] -

Code-

focused

CleanF 2 [F] -

STrav 1 [F] 3 [F]

NCP - 1 [F]

One-way STrav 2 [F] -

(b) Max-Temps solution approaches: ReshapeF - Reshape-first, Col-
lectF - Collect-first, ProcessU - Process-until, NCP - No clear plan.

Pattern Approach

Students

Course1 Course2

Cyclic

ReshapeF - 1[C], 1 [F]

CollectF 3 [C] 2 [C]

Code-

focused

ReshapeF - 2 [F]

CollectF 2 [F] -

ProcessU 5 [F] 1 [F]

NCP - 1 [F]

One-Way

ReshapeF - 2 [F]

CollectF 2 [F] -

on as they fail to maintain the high-level insight of connections

between tasks that they described initially.

5.3 RQ2: Success on Programming Problems

RQ 2 asks how students’ movements between tasks and code relate

to their success on our programming problems. Table 1 shows the

number of students who attempted each solution approach per

problem and whether their code was close to a working solution.

Observation 1. Students who followed the cyclic pattern gener-
ally developed more correct solutions than those with other patterns.

Transcripts of cyclic students in both problems showed that they

concretely described the tasks they implemented, capturing both

the role of each task and how the tasks connected to each other.

The descriptions of these connections were critical in informing

the composition of their code. In Rainfall, at least half the students

in each cohort exhibited a cyclic movement between tasks and

code and were generally close to a correct solution. None of the

code-focused or one-way students developed correct solutions. Their

transcripts reveal that while they identified problem-tasks, they

struggled to concretely relate these tasks, which seemed to influence

their ability to implement these tasks in code. Others revealed a

dissonance between their high-level plan and the code-pattern

they retrieved, failing to recognize the limitations of their retrieved

patterns in the context of the tasks they identified. The number

of cyclic students decreased in Max-Temps: of six students who

were cyclic in Rainfall, three moved to code-focused and three to

one-way in Max-Temps. Their data also show that they struggled

to concretely describe connections between tasks they identified.

Observation 2. Some students struggle to capture identified
task-level relationships at the code level.

A prevalent factor in why students get stuck, particularly in Max-

Temps, is that they fail to concretely describe how tasks connect

to each other. For example, students who attempt the Reshape-
first approach can’t figure out how to keep track of the sublists: the

missing relational glue here is the data structure to keep track of the

sublists (i.e. a list-of-lists). Without articulating the data structure,

students do not know what a reshaping function should produce

and what code constructs to use to implement reshaping. They also

do not know what data to use as input for functions that process

the reshaped input. The interviews and an inspection of the course

syllabi reveal that students have not done problems involving list-

of-lists or restructuring flat lists into nested lists; thus, they do not

have patterns to retrieve for reshaping the data. Similarly, students

struggled to figure out how to track data for Process-until (tracking
the current max) and Collect-first (tracking the current sublist). All

of these approaches also require some form of recursion over a

modified suffix of the list, but students lack a previously-learned

schema for modifying the suffix of the list to recur on.

Observation 3. Some students who got stuck failed to adapt
patterns to new contexts.

In Rainfall, students got stuck on handling the -999 sentinel.

Students mentioned in the interviews that they have not worked

on problems that terminated list-computations prematurely at a

specific element rather than the end of the list (the empty-list). They

get stuck because they fail to see the similarity of roles between

-999 and the empty-list as base-cases.

Observation 4. Some students who got stuck failed to identify
the limitations of the pattern they retrieved.

A prevalent mistake among students who got stuck in Rain-

fall is that they started mechanically from the list-template and

wrote code for the average formula within the recursive-case of the

template, as in student course1-stud2’s code below:

(define (average alon)
(cond

[(empty? alon) empty]
[(cons? alon)
(/ (+ (first alon) (average (rest alon)))

(number (alon)))]))

From the perspective of the problem, this makes sense: the list-

type input prompts the retrieval of the list-template, which students

filled in with code for average. This, however, overuses the template.

Students did not decompose the average code around the sum and

count subtasks into their own recursive templates, missing that the

average task itself is not a recursive computation, and thus requires

a slight modification to the template. They did not concretely think

about how the retrieved average formula’s task-components impact

the use of the template code. Courses explain that a single template

function can only perform one traversal-based operation; our data

suggests that this task-level decomposition needs more emphasis,

and that students may need to be taught how to recognize apriori

when a problem requires them to modify the schemas they know.

5.4 RQ 3: How Did Students Get Unstuck?

RQ 3 asks what students do when they get stuck on a problem. Our

analysis, however, pointed to an obvious pattern: when students

got stuck, they remained stuck. We hoped students would fall

back on appropriate design recipe steps to uncover gaps in their

understanding of the problem or of the tasks. They didn’t recognize

to use the design recipe techniques to get unstuck. In general:

Observation 5. Even when students started with the design
recipe steps, they did not come back to them when they got stuck.

Missed opportunities in Rainfall. Writing examples of the input

or test cases would have helped students see the base-case role of

-999; none of those who got stuck did this. The code below shows

examples of data, which all produce the same rainfall average result:

; Examples of data
(define data1 (list 1 2 -7 3 -999 4))
(define data2 (list 1 2 -7 3 -999))
(define data3 (list 1 2 -7 3))

Students mostly wrote examples and test cases at the start of

their process and often just copied the example given in the problem

statement. When they wrote test cases at the latter parts of their

process, it was only to check if their code ran. They rarely, if ever,

wrote examples and test cases to concretely illustrate their current

understanding of the problem or task at hand.

The average-formula problem is trickier: students could identify

each of the task-components first, then follow the design recipe for

each of the inner-tasks (i.e. sum and count). Doing so should lead

students to simply call sum and count within average. This, however,
requires amore explicit task-level decomposition step beforeworking
on the design recipe, to identify task-components that may require

their own template-based traversals. None of the students who got

stuck did this, instead modifying code in trial-and-error fashion.

Missed opportunities inMax-Temps. Some students wrote data

definitions, motivated by the novelty of a list with both numeric and

string elements. Their data definitions, however, were either incom-

plete or incorrect. For example, student course2-stud3 wrote a

data definition for the elements of the input list, but missed writing

a data definition for the actual list; this led her to use a template

that was only good for a list element, but not the input list itself:

; A Newday is one of
; - "new -day"
; - Number

; (define (nd -temp nd)
; (cond [(string=? nd "new -day")...]
; [(number? nd) ...]))

The correct input data definition and template would have been:

; A list -of -element is
; - empty, or
; - (cons number list -of-element), or
; - (cons string list -of-element)

; (define (func input)
; (cond [(empty? input) ...]
; [(string? (first input)) ...]
; [(number? (first input)) ...]))

Even when students got stuck writing their code using an in-

correct template, they never went back to reexamine and correct

their data definitions (or template). Students whose Max-Temps

code was close to correct wrote their functions using the correct

template, suggesting that identifying the correct template may be a

step in the right direction in writing a correct Max-Temps solution.

6 CONCLUSIONS AND TAKEAWAYS

We developed a conceptual framework that captures the task- and

code-level thinking students engaged in as they solved our program-

ming problems. Our findings suggest that students who concretely

described relationships between tasks were able to move back-and-

forth between tasks and code and had the most success with the

given problems. Students who struggled failed to capture how the

tasks in the problems interconnected, could not transfer patterns

to new contexts, or overused the patterns they retrieved.

Insights on Teaching the Design Recipe. Our observations of
how students used the design recipe suggests that they see the

recipe as a process to start with and follow, but not as a set of

techniques to return to when they get stuck. Discussions with the

course instructors corroborated this hypothesis: lectures had not

emphasized using the recipe steps when debugging. These suggest

that the students may have built a habit of following the design

recipe, but not necessarily an insight around how each recipe step

is a technique towards building a concrete understanding of the

problem-space. Students may need additional instruction that fo-

cuses on how to use the design recipe steps mid-process (not only
to start with) when they get stuck. For example, students might

be given code with errors and explicitly asked to reason about the

causes of the errors using specific design recipe steps. Targeted

exercises such as this might help students practice a more insightful

use of the design techniques rather than just as a mechanical habit.

Insights on Task- and Code-level Thinking. Our observations
confirm findings from prior studies [2] that students think in terms

of a problem’s core tasks. Where they struggle is in concretizing

relationships between tasks, which affects their ability to compose

tasks’ code implementations, especially for tasks they have not seen

before. Using techniques from the design recipe can help uncover

some of these relationships. Some task-relationships required new

patterns students have not seen, for example, doing a recursion

on a modified list suffix or prefix, or keeping track of lists using

another list. This suggests that just because students have seen an

instance of a pattern (e.g. a list of numbers; recursion on the tail of

the list), does not mean that students can generalize those patterns

to other contexts (e.g. a list of lists; recursion on a modified suffix

of the list). As instructors, we should be careful not to assume that

students have understood the underlying idea behind a pattern,

simply because we’ve shown them an instance of it. Focusing on

enforcing students’ understanding of patterns they’re taught may

help them navigate between tasks and code better in new situations.

Conclusions. Overall, our findings indicate that students need to

be explicitly taught techniques for navigating back to high-level

plans when they get stuck, and how to identify when current code

has diverged from a plan and needs to be rethought. Both are

significant open questions for computing education.

ACKNOWLEDGMENTS

We thank the instructors and their students for participating in our

project. Work supported by US NSF grants 1116539 and 1500039.

REFERENCES

[1] Jerome Seymour Bruner. 1978. The role of dialogue in language acquisition. In

The Child’s Conception of Language, W.J.M. Levelt A. Sinclair, R.J. Jarvella (Ed.).

Springer-Verlag, New York, 241–256.

[2] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between

Bottom-Up and Datatype-Driven Program Design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New

York, NY, USA, 205–210. https://doi.org/10.1145/2839509.2844574

[3] Francisco Enrique Vicente G. Castro. 2016. Pedagogy and Measurement of Pro-

gram Planning Skills. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (ICER ’16). ACM, New York, NY, USA, 273–274.

https://doi.org/10.1145/2960310.2960344

[4] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis. SAGE.

[5] Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and

Assessing Programming Strategies Explicitly. In Proceedings of the Eleventh
Australasian Conference on Computing Education - Volume 95 (ACE ’09). Aus-
tralian Computer Society, Inc., Darlinghurst, Australia, Australia, 45–54. http:

//dl.acm.org/citation.cfm?id=1862712.1862723

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[7] Kathi Fisler and Francisco Enrique Vicente Castro. 2017. Sometimes, Rainfall

Accumulates: Talk-Alouds with Novice Functional Programmers. In Proceedings
of the 2017 ACM Conference on International Computing Education Research (ICER

’17). ACM, New York, NY, USA, 12–20. https://doi.org/10.1145/3105726.3106183

[8] Emily R. Fyfe, Nicole M. McNeil, Ji Y. Son, and Robert L. Goldstone. 2014. Con-

creteness Fading in Mathematics and Science Instruction: a Systematic Review.

Educational Psychology Review 26, 1 (2014), 9–25.

[9] Päivi Kinnunen and Beth Simon. 2012. Phenomenography and grounded theory

as research methods in computing education research field. Computer Science
Education 22, 2 (June 2012), 199–218.

[10] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented Instruc-

tion and Its Influence on Problem Decomposition and Solution Construction. In

Proceedings of the ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’07). ACM, 151–155.

[11] Peter L. Pirolli and John R. Anderson. 1985. The Role of Learning fromExamples in

the Acquisition of Recursive Programming Skills. Canadian Journal of Psychology
39 (1985).

[12] Peter L. Pirolli, John R. Anderson, and Robert G. Farrell. 1984. Learning to

program recursion. In Proceedings of the Sixth Annual Cognitive Science Meetings.
277–280.

[13] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989).
[14] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A

Comparison of Novice and Intermediate Student Programmers. Hum.-Comput.
Interact. 6, 1 (Mar 1991), 1–46.

[15] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms

and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858.

[16] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers. In

Proceedings of IJCAI.
[17] Jacqueline Whalley and Nadia Kasto. 2014. A Qualitative Think-aloud Study

of Novice Programmers’ Code Writing Strategies. In Proceedings of the ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’14). ACM, 279–284.

https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/2960310.2960344
http://dl.acm.org/citation.cfm?id=1862712.1862723
http://dl.acm.org/citation.cfm?id=1862712.1862723
http://www.htdp.org/
https://doi.org/10.1145/3105726.3106183

	Abstract
	1 Introduction
	2 Related Work
	3 Course Curriculum
	4 Study Design and Data Collection
	5 Analysis and Discussion
	5.1 Framework: Task- and Code-level Thinking
	5.2 RQ1: Movements Between Tasks and Code
	5.3 RQ2: Success on Programming Problems
	5.4 RQ 3: How Did Students Get Unstuck?

	6 Conclusions and Takeaways
	Acknowledgments
	References

