
Sometimes, Rainfall Accumulates:
Talk-Alouds with Novice Functional Programmers

Kathi Fisler

Brown University

Providence, RI

kfisler@cs.brown.edu

Francisco Enrique Vicente Castro

WPI

Worcester, MA

fgcastro@cs.wpi.edu

ABSTRACT
When functional programming is used in studies of the Rainfall

problem in CS1, most students seem to perform fairly well. A hand-

ful of students, however, still struggle, thoughwith different surface-

level errors than those reported for students programming imper-

atively. Prior research suggests that novice programmers tackle

problems by refining a high-level program schema that they have

seen for a similar problem. Functional-programming students, how-

ever, have often seen multiple schemas that would apply to Rainfall.

How do novices navigate these choices? This paper presents results

from a talk-aloud study in which novice functional programmers

worked on Rainfall. We describe the criteria that drove students

to select, and sometimes switch, their high-level program schema,

as well as points where students realized that their chosen schema

was not working. Our main contribution lies in our observations of

how novice programmers approach a multi-task planning problem

in the face of multiple viable schemas.

KEYWORDS
Rainfall; program schemas; functional programming

1 INTRODUCTION
Soloway’s Rainfall problem [17] has become a benchmark in com-

puting education. This problem (which essentially asks students to

compute the average of a sequence of numbers that appear before

a sentinel value) is interesting because it appears straightforward

while having non-trivial underlying complexity. Over the years,

several authors have noted some of the challenges with Rainfall

(see section 2), leading some to question whether the community is

making progress on “beating” the Rainfall problem [8].

Most existing work on the challenges of Rainfall was conducted

in the context of imperative programming [15–17, 20]. Some re-

searchers have begun to publish studies of Rainfall with students

who used functional programming [7], but those studies have not

reported particular challenges that arise when students attempt

Rainfall in this context. Given that different programming languages

have different idioms and affordances, a better understanding of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICER ’17, August 18-20, 2017, Tacoma, WA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4968-0/17/08. . . $15.00

https://doi.org/10.1145/3105726.3106183

how students solve—and struggle with—Rainfall in different peda-

gogic contexts and programming languages will enhance our un-

derstanding of this deceptively interesting programming problem.

The functional perspective is particularly interesting because

students who learn functional programming are typically exposed

to multiple viable solution structures for Rainfall. Studying how stu-

dents approach Rainfall with functional programming thus provides

an opportunity to explore how novice students navigate multiple

applicable schemas, each of which they may only partly understand

from CS1. Formally, the research question explored in this paper is:

When novice programmers have seen multiple schemas that
might apply to a problem, how does their solution emerge
and evolve?

We explore this question qualitatively, through narratives of four

students’ attempts at Rainfall in a talk-aloud session at the end of a

CS1 course. These studies exposed factors in how novice students

select, switch, and apply program schemas to problems requiring

plan composition.

2 RELATEDWORK
Most published studies of Rainfall involved students who were pro-

gramming imperatively, in languages such as Pascal [17], Java [15],

Python (also [15]), or C++ [16]. Ebrahimi had groups of students

working in various languages, one of them Lisp [5]: however, his

students had learned imperative constructs within Lisp.

Fisler published the first study of Rainfall with functional pro-

gramming [7]. Her data was from multiple schools that were using

theHow to Design Programs (henceforth htdp) curriculum, but with

a variety of languages (Racket, OCaml, and Pyret). In her sample of

218 students, 186 had a (mostly) correct solution to Rainfall. Further-

more, her participants produced at least three different high-level

structures of solutions (two appear in section 5). In contrast, impera-

tive studies have typically produced a common high-level structure,

taking only a single pass over the input sequence (whether with

for or while loops), maintaining the running sum and item count

in variables [15–17] (also seen in our own imperative studies). The

study participants in this paper were also learning htdp, but they

are from a school that did not participate in Fisler’s original study.

Castro and Fisler [1] captured the computer screens of htdp

students working on a different plan-composition problem called

Adding Machine. That problem asks for a list of sums of sublists

of input as separated by zeros, stopping when two consecutive

zeros are discovered. Castro and Fisler’s students performed quite

poorly on the problem, with many of them following the htdp

design processes into an initial program structure that was not

suitable to solve the problem. One participant in this study shared

https://doi.org/10.1145/3105726.3106183

this problem; others avoided it, but could have gone down this path.

Section 7 discusses our students’ design processes in detail.

Pirolli et al.’s studies of learning recursive programming ob-

served that novices modify already-learned solutions to fit the

context of a new problem [11, 12]. Spohrer and Soloway’s studies

of the end-product programs of students and their talk-aloud pro-

tocols (verbal reports of planning, implementation, and debugging

steps taken in programming a solution) echo this [19]: they sug-

gest that students either (1) use previously learned programming

knowledge (programming plans) to write the code, or (2) translate

relevant non-programming knowledge (non-programming plans)

into code. Students repair coding decisions after testing uncovered

unexpected code behavior. Rist [13, 14] refined these models, de-

scribing two paths programmers take when writing code. When

a programmer knows a viable schema, she takes a plan retrieval
path, implementing code in top-down fashion, with smaller-scale

modifications to address problem subtleties. When the program-

mer has no schema in her memory, she takes a plan creation path.

She identifies a core computation called a focus (usually, a major

computation required in the problem such as adding in an averag-

ing problem) writes code to implement the focus, and then builds

around that code bottom-up until a working solution is achieved.

None of these theories of novice program construction addresses

what happens when programmers have weaker knowledge of mul-

tiple viable schemas, or how novice programmers switch schemas

mid-stream. This is the main question explored in our study.

de Raadt et al. used Rainfall to study impacts of explicitly teach-

ing planning strategies [3]; they do not discuss change in strategy.

3 BACKGROUND: THE RAINFALL PROBLEM
Soloway proposed the Rainfall problem in the 1980s in the con-

text of studying student difficulties with plan composition [17].

The original wording asked students to compute the average of

a sequence of numbers, which were input through keyboard I/O,

that occurred before a sentinel value had been entered. Soloway

identified four sub-tasks that needed to be composed: taking in

input, summing the inputs, computing the average (which involves

counting the inputs), and outputting the average. Over the years,

other researchers studied variations of Rainfall: some added noisy

data in the form of negative numbers, some added additional re-

porting requirements (such as printing the maximum daily rainfall

as well as the average). All variations have shared common core

goals of summing, counting, averaging, input, and output.

Our formulation of Rainfall includes noisy data, but only asks

for the average as output. We provide the inputs in a data structure,

as our host course does not teach I/O. Our version reads:

Design a program called rainfall that consumes a list of num-

bers representing daily rainfall readings. The list may contain

the number -999 indicating the end of the data of interest.

Produce the average of the non-negative values in the list

up to the first -999 (if it shows up). There may be negative

numbers other than -999 in the list representing faulty read-

ings. If you cannot compute the average for whatever reason,

return -1.

This version requires six tasks:

• Sentinel: Ignore inputs after the sentinel value

; A list -of-number is

; - empty, or

; - (cons number list -of-number)

;; TEMPLATE for list -of-number (generic name lon -func)

#|

(define (lon -func alon)

(cond [(empty? alon) ...]

[(cons? alon) ... (first alon)

... (lon -func (rest alon)) ...]))

|#

Figure 1: The htdp input-type description and template for
a program to process a list of numbers. The input-type de-
scription is a comment (semicolon is the comment character
in Racket, the stick/hash create a block comment). cons cre-
ates a new list from an element and an existing list (it does
not modify the existing list). The template has one condi-
tional branch for each variant in the datatype (here, empty
list and non-empty list). In the non-empty case (marked by
cons?), the template recurs on the rest of the list to guaran-
tee traversal of all elements. The ellipses get filled when the
template is used to solve a specific problem.

• Negative: Ignore negative inputs

• Sum: Total the non-negative inputs

• Count: Count the non-negative inputs

• DivZero: Guard against division by zero

• Average: Average the non-negative inputs

4 BACKGROUND: THE HOW TO DESIGN
PROGRAMS CURRICULUM

htdp [6] is an introductory computing curriculum that teaches

students how to leverage the structure of input data and multi-

ple representations of functions to design programs. Students are

taught a multi-step process called the design recipe for approaching
a new programming problem. Roughly, the steps include identifying

the type of input and output data for a problem, writing concrete

examples of the input data, writing a type signature (though in

comments rather than a formal type language) for a function that

solves the problem, writing several illustrative examples or test

cases for the function, writing a skeleton of code (called the tem-
plate) that fully traverses the input type but ignores details of the

desired output, and filling in the template with details of the given

problem. Figure 1 shows the type description and template for a

list of numbers, the datatype used in Rainfall.

The template is the most relevant aspect of the design recipe for

this study. Templates provide schemas for programs. Unlike some

schemas, which are contextualized to a style of problem, templates

mirror the structure of a particular data type. In the early part of an

htdp course, students are taught to always start with the template

that matches the type of their input data. Later in the course, as

programming problems get more complex, students learn other

schemas and the contexts in which to use them (thus relaxing, or at

least broadening, the template step of the design recipe). Students

in our study course had been exposed to two other schemas that

could apply to Rainfall; we discuss these in section 5.

Week Topics Assignment
1 Arithmetic expres-

sions and functions

Composing images

2 Conditionals and

structures

Functions over structs (movie

theater data), conditionals, test

cases

3 Lists of atomic data,

the design recipe

Functions over structs (captur-

ing weather events), functions

over lists of strings

4 Lists of structs Lists of structs (political ads)

5 Trees Binary search trees

6 Locals and higher-

order functions

N-ary trees (system of rivers

and tributaries)

7 Accumulators map and filter (revisit political

ads), accumulators (variant on

numeric max)

8 Variables, mutation None (end of course)

Figure 2: The topic sequence in the host course for this study.
Our Rainfall talk-alouds occurred at the end of week 7.

In htdp, functions and data types are the building blocks for

programs, not variables and loops as in curricula based on impera-

tive programming. Courses start with writing non-parameterized

expressions to compute with numbers and images (e.g., composing

images to create flags), then teach abstraction over concrete similar

expressions to create functions in roughly the third lecture. Stu-

dents then cover a series of data structures—structs/records, lists of

atomic data, lists of structures, binary trees, n-ary trees—each fol-

lowing the same design recipe to scaffold program design based on

the shape of the input data structures. All of this material precedes

mutable variables (covered much later in the course).

The htdp Instance for this Study
The course in which we conducted the study was a CS1 course for

students with limited or no prior programming experience (those

with prior experience take a different course). The course uses

Racket (a variant of Scheme) as its programming language. Figure 2

outlines the sequence of topics and assignments in the course. The

course ran over 8 weeks, with 4 hours of lecture per week and one

hour of lab per week. The Rainfall study occurred during week 7.

The course did not explicitly cover plan composition or decom-

posing problems into sub-tasks. The course did emphasize creating

helper functions to break down larger computations, with appro-

priate use of helpers counting significantly in homework grading.

Prior to the Rainfall session, every problem covered in lecture or

assigned for homework had either been a structural traversal of a

recursively-defined data structure (a list, a binary tree, or an n-ary

tree), or a function that used a single additional parameter to accu-

mulate one running value (such as the sum of elements so far in a

list). In particular, students had not yet seen a problem that wasn’t

a direct instantiation of an htdp template.

5 RAINFALL UNDER HTDP

At first glance, Rainfall seems a natural fit with htdp: the problem

involves straightforward functions over lists of numbers (counting

and summing, both canonical recursive functions that students see

in lecture when lists of numbers are introduced). The fit is less clear,

however, in the context of the template. If a student followed the

basic recipe blindly, applying the list-of-numbers template, they

would start with the following code:

;; rainfall : list -of-number -> number

;; compute average of non -neg nums before -999

(define (rainfall alon)

(cond [(empty? alon) ...]

[(cons? alon) ... (first alon)

... (rainfall (rest alon)) ...]))

This code is hard to modify into a working Rainfall solution:

because rainfall is called recursively on the rest of the list, filling in

the ellipses in the cons? case requires computing the average of a

list from the average of the rest of the list. This is more complicated

than the usual algorithm of dividing the sum of the list by its length.

Each of sum and count are straightforward applications of the

htdp template, but the rainfall function itself needs to decompose

its computation into these two sub-tasks.

htdp exposes students tomultiple viable Rainfall solutions (which

is what makes this study interesting in the first place). Figure 3

shows a solution that reduces the input data to the list of numbers to

average (truncating at -999 and removing the negatives), then calls

a function to average the clean list. Observe that the sum and actual-

rain functions follow the list-of-numbers template, but the overall

rainfallC function does not (it decomposes the average task into the

sum and count tasks instead). This structure was the most common

in Fisler’s earlier Rainfall study with functional programming [7].

Figure 4 shows a solution structure based on what htdp terms

accumulators. This program includes a nested function with param-

eters for each of the running count and sum of data to average.

Once the end of the data or -999 is reached, another local function

is called to produce the average. This structure traverses the data

only once, and is closer in style to what an imperative programmer

would produce with a loop and variables for the sum and count.

6 STUDY LOGISTICS
Our data were collected as part of a course-long study of how CS1

students (at a selective US university) approach program design. In

one session of this study, 13 students talked aloud as they spent

30 minutes trying to solve Rainfall (as defined in section 3). Af-

ter 30 minutes, we archived the student’s code and interviewed

them about how they approached the problem: what they found

difficult, what information they drew on, and what inspired their

design decisions. Both the talk-aloud and the interview were audio-

recorded, then transcribed verbatim for analysis. Students worked

on a computer, in the course’s standard programming environment.

Participants: This paper presents data from four students from

the overall study (additional narratives did not fit in the page limits).

Of the four, two are female and two are male. We selected these

four to reflect variety in course performance, prior experience, and

the structure of students’ final solutions. Figure 5 summarizes each

student’s grades and programming experience prior to CS1.

;; sum : list -of -number -> number

;; produces the sum of the given list of numbers

(define (sum alon)

(cond [(empty? alon) 0]

[(cons? alon) (+ (first alon) (sum (rest alon)))]))

;; actual -rain : list -of-number -> list -of-number

;; produces list of non -negative values that occur before -999

(define (actual -rain alon)

(cond [(empty? alon) empty]

[(cons? alon) (cond [(= (first alon) -999) empty]

[(negative? (first alon)) (actual -rain (rest alon))]

[else (cons (first alon) (actual -rain (rest alon)))])]))

;; rainfallC : list -of-number -> number

;; produces average of non -negative nums in list before -999, or -1 if no such nums exist

(define (rainfallC alon)

(local [(define good -data (actual -rain alon))]

(if (> (length good -data) 0)

(/ (sum good -data) (length good -data))

-1)))

Figure 3: Rainfall solution in Racket, clean-first style. The overall function (rainfallC) calls a helper function (actual-rain) to
truncate and clear negative numbers from the input data. It then computes the sum and length to compute the average. length
is a built-in operator that returns the length of a list. Semicolon is the Racket comment character. This solution could be
adapted to use higher-order functions: fold can compress the sum to a single expression, and filter could be used to remove
the negatives if a separate function had been used to truncate data after -999. [18] humorously presents a Scala version.

;; rainfallA : list -of-number -> number

;; produces average of non -negative nums in list before -999, or -1 if no such nums exist

(define (rainfallA alon)

(local [;; produce -average: number number -> number

;; computes average given count and sum, producing -1 if count is 0

(define (produce -average count sum)

(if (> count 0) (/ sum count) -1))

;; rainfall -accum: list -of-number number number -> number

(define (rainfall -accum data count sum)

(cond [(empty? data) (produce -average count sum)]

[(cons? data)

(cond [(= (first data) -999) (produce -average count sum)]

[(negative? (first data)) (rainfall -accum (rest data) count sum)]

[else (rainfall -accum (rest data) (+ 1 count) (+ (first data) sum))])]))]

(rainfall -accum alon 0 0)))

Figure 4: Rainfall solution in Racket, accumulator style. The overall function (rainfallA) contains two local (nested) function
definitions: one for computing the average and one that recurs through the input list, accumulating the sum and count of
non-negative values until -999 is reached. Semicolon is the Racket comment character.

ID (Gender) Experience Exam Course
StudA (F) C++, Online courses 71 (C) 76.47

StudB (M)

Java, Python, Ruby, Self-

study

87 (B) 94.36

StudC (M)

Python, JavaScript, Java,

HTML5, CSS, PHP, Self-

study, AP class, High school

class, Online courses

89 (B) 81.08

StudD (F) None 93 (A) 87.14

Figure 5: Participant overview. Experiencewas self-reported
via checkboxes on a survey. The examwas in course week 3.

Data Analysis: The first author developed the narratives in sec-

tion 7 from the typed talk-aloud and interview transcripts. She is

an experienced htdp instructor, but did not teach this instance of

the course. The second author conducted the talk-alouds and inter-

views. He reviewed the first author’s narratives for accuracy. We

divided work this way so that the narratives would reflect the peda-

gogy and learning of htdp more than personalities of the students.

The first author does not know the identities of the students.

The narrative methodology here is influenced in part by the

narrative analysis method used by Whalley and Kasto in their in-

vestigation of novices’ code writing strategies [21]. They developed

descriptive accounts of how students used existing schema to write

code from think-aloud and interview data. We also draw on ideas

from grounded theory [9], in terms of the narrative reconstructions

that describe how students varied in how they chose constructs,

patterns, or techniques to build their Rainfall solutions.

In the analysis, we marked comments pertaining to choice of

schemas, choice of language constructs, discussion of design choices,

mentions of problem tasks (whether or not they were reflected in

code), and rationale for editing previously-written code. We also

marked comments on how students perceived the Rainfall problem.

7 NARRATIVES
This section presents narratives of each participants’ design pro-

cess
1
. We also summarize both the correctness and the structure of

each final solution. Possible correctness values are poor (far from
working), fair (in the right direction, but with many errors), and

almost correct (very close and could have been fixed easily after

some straightforward testing to show the bugs). We show final code

for some students, but space precludes including it for all.

7.1 StudA

Correctness: poor
Overall Structure: Accumulator, but role of parameter unclear

StudA begins by writing the function name and input type. She

proceeds to write the list-of-numbers template (as in fig. 1). Inside

the non-empty list case, she inserts a conditional to check whether

the first element of the list is positive.

She thinks of using an accumulator in order to track the running

sum of positive numbers. She goes back to her notes to check on

how to write an accumulator function, then adds a local definition

for a function with an accumulator parameter. She recalls that

accumulator functions return the accumulator parameter in the base

case; accordingly, she replaces the -1 she was originally returning

in the base case with the accumulator parameter.

She notes that “I can do the division at the end”, then goes back

to working on the running sum. If the first list element is negative,

she calls the function recursively with the same parameter value.

She returns to thinking about where to handle the division: “I feel
like the division should happen inside the function. So I don’t want
to be adding here ... I want to divide the rainfall - actually no wait I
want to add the rainfall” (at this point, she is wrestling with how to

integrate the sum and average tasks within the same area of code).

StudA notices that her current code never returns -1 (by inspec-

tion, not by running it): “So now my issue is nothing will turn up -1 if
the average can’t be produced or if the list is just empty. So somehow
I have to work that in there.” She decides to try running the code.

She tries an input of all positive numbers, but gets back a negative

average. She realizes this can’t be right. She correctly articulates

that an average is computed by dividing the sum by the count.

After this point, StudA starts to thrash. She articulates a variety

of possible edits involving -1 and the accumulator parameter. Her

comments include statements like “somehow I have to store the
divided value into the accumulator or to make that produce at the
end.”. She continues to try to reason out how her code works. She

realizes that there are multiple subtasks: “somehow I have to get

1
We follow Dziallas and Fincher [4] in calling these narratives, not case studies.

the three of these things together without adding all three together”.
She seems to keep switching the task (addition, division, counting,

or returning -1) to do around the recursive call on the rest of the

list—her final code (below) reflects this confusion. Just before time

is up, she thinks of using a separate helper function: “So maybe I
need to make a helper function where I just add them all up and then
divide out later.”. Time runs out before she can try it in code.

(define (rainfall alon)

(local

[(define (rainfall alon acc)

(cond [(empty? alon) acc]

[(cons? alon)

(if (> (first alon) 0)

(/ (rainfall (rest alon) (first alon))

(+ 1 acc))

(rainfall (rest alon) acc))]))]

(rainfall alon 0)))

During the interview after the coding session, StudA remarks

“I thought accumulator would be useful because every time it finds
another positive value [...] the average changes because the bottom
number would keep getting bigger. So the accumulator would keep
adjusting to that.” The student has associated some behavior with

accumulators, but does not understand the pattern well enough to

get close to a working solution.

7.2 StudB

Correctness: fair (count of data inaccurate)
Overall Structure: Accumulator with parameter for running sum

StudB begins by writing the function name, input type, and

output type as he reads the problem. The student starts to follow

the template by creating a conditional, articulating that the function

should return 0 if the list is empty (this appears to be a pattern

of habit, as the correct answer on empty input would have been

-1). As the student is thinking out what to do when the list is non-

empty, he articulates the algorithm for computing the average, and

says “we want to divide something by the length of [the input list]”,
observing that only the non-negative values should be considered.

The student realizes he needs a helper function that sums the

values in a list. The student articulates the type signature and writes

a sum function following the htdp template for lists of numbers.

This function does not account for negative numbers or the -999

sentinel. The student then goes back to the original function and

starts to handle the negatives, introducing a conditional that checks

the sign and value of the first number on the list. When -999 is

encountered, the student notes that the program should return the

average (but doesn’t completely fill in the needed code). As the

student continues filling in the conditional, he starts to question

whether the helper could be handled by built-in primitives.

The student finishes filling in the conditional and tries running

the program, but discovers it goes into an infinite loop. At this

point, the buggy program follows the pattern to recursively sum

the positive numbers, returning the average when the -999 is en-

countered: one branch of the conditional within the recursion is

implementing the sum task while another implements the average

task (which can’t work since this leaves no base case for the sum

task). The student realizes that the code isn’t “storing the value” of

the running sum, and switches to an accumulator-based design,

with a parameter to hold the running sum.

The student then begins a cycle of editing the code, testing

it, having the tests fail, then editing again. As the student talks

through the cycle, he begins looking for fragments of code to delete

or modify: for example, he tries removing various branches of

conditionals, including the one that terminates the recursion if the

list becomes empty before reaching -999 (this branch never gets

restored before time is called).

Next the student tries to figure out where to return -1: “So this is
still working but this is not working. So it’s not producing -1. And so if
the element’s negative it’s running the recursion on the rest of the list.
Maybe - no. Maybe the [accumulator] could be set to something else
other than just [the current accumulator value] or but I can’t think of
what it needs to be set to.” The student hits on the idea of a different

helper function to handle the case in which all numbers in the

original input list are negative. He proceeds to write a straight-up

(correct) recursive function to check whether all numbers in a list

are negative, then uses this to guard computation of the average

once -999 is detected. That said, the student never got the tasks

and their code mapping straight in his head. He kept modifying the

in-progress code with Rist-like focals, rather than thinking about

how to decompose the problem.

The final code contains two major errors: it does not handle

input lists that lack the -999, and the average computation uses the

wrong denominator (the length of the suffix that follows the -999,

not the count of non-negative numbers before the -999).

7.3 StudC

Correctness: fair (conflates sum and average tasks)

Overall Structure: Accumulator with filter (latter not integrated)

StudC starts by writing the function signature and purpose.

He begins to write the list template, filling in -1 as the answer in

the empty-list case based on the problem statement. He wonders

whether he should be using local, which is part of the standard

pattern for writing functions with accumulators in the course. The

student starts to write the inner accumulator function, again follow-

ing the template. But this time, the student returns the accumulator

value in the empty-list/base case. That is the standard usage pat-

tern students have seen with accumulator functions to this point

in the course. To this point, StudC has not articulated what the

accumulator variable represents; his work seems entirely syntactic.

The student talks about checking whether the first number in the

list is negative, then about creating a helper function to compute the

average; this comes up more as a side comment than as part of the

flow of where this helper might get called from the overall Rainfall

computation. The student realizes that the average computation

will need both the running sum and the count of items, and thinks

about how to obtain both values: “it almost seems like I would use
an accumulator to show how many times I’ve actually gotten through
that. [...] so I guess we’ll use another local” (whether the student is
suggesting another locally-defined accumulator function or another

parameter within the existing accumulator is not clear at this point).

The student notes the requirement to stop at the first -999 and to

ignore negatives. The student recognizes that filter could ignore

the negative numbers, and would eliminate the need to check the

sign of individual list elements during the accumulator function.

The student writes a helper function that uses filter to remove all

non-positive numbers from an input list. (The student does not,

however, call this helper function from the accumulator function.

The helper remains uncalled in the final code).

Next, the student adds a conditional to check for a value less than
-999 (incorrect logic, changed in final). For the “then” branch, the

student articulates calling the function recursively to process the

rest of the list, while adding the new value to the accumulator. As

shown in the final code below, the student adds another parameter

(times) to track the count of values. He tries to compute the average

and use it as a new parameter value (he never articulates a clear role

for this parameter). The else case of the conditional gets a recursive

call to the function that takes the rest of the list and leaves the two

accumulator parameters unchanged.

(define (rainfall alon acc times)

(cond [(empty? alon) acc]

[(cons? alon)

(if (> (first alon) -999)

(rainfall (rest alon)

(/ (+ (first alon) acc) times)

(+ 1 times))

(rainfall (rest alon) acc times))]))

The student then enters a testing phase, running his code on

a single test case. The test fails. The student correctly diagnoses

that the execution never satisfies the -999 check and reverses the

less-than computation in his conditional check. The student adjusts

initial values for his accumulator parameters, but does not correctly

trace the execution to isolate the actual errors in his code.

7.4 StudD

Correctness: Almost correct (sans two cond cases reversed)

Overall Structure: Clean-first with accumulator (for cleaning)

StudD begins by writing the function name, input type, and

output type as she reads the problem statement. She proceeds to

start writing the template, inserting -1 as the answer in the base

case based on the problem statement. She instinctively questions

whether the base case answer should instead be 0, but decides to

follow the problem statement and see where it goes. She does not

appear to write the non-empty case of the template blindly, but

instead talks through what might need to happen in this case.

She fairly quickly ponders whether she will need an accumulator,

but she isn’t entirely sure why this would be necessary. She thinks

she should have a function that “goes through each number in the
list just to make sure it’s not -999”. She goes on to say that “with
every number that it passes that is not -999, it’s gonna add those all
up”. So at this point, StudD has decided to write a function that

traverses the list and adds up all the relevant data.

StudD begins to change course once she thinks about what to do

upon finding the -999: “so then I would need another helper function.
Once it hit the -999, it would divide it by the [...] number of terms
it went through but I don’t know how I would do that yet”. As she
tries to write the base case of her accumulator function, she realizes

that summing and the overall rainfall problem require different

base-case answers: “if it’s empty, that would return either–it would
return -1 for the rainfall purposes, but for this one I don’t know if it
would return 0 [or] -1”. This prompts her to change her accumulator

to instead build a list of the relevant (clean) data, with separate

functions to compute the average of this list. Her final solution is

a clean-first style, but with an accumulator in the function that

cleans the data. During the reflection interview, she remarks how

accomplished she feels for solving the problem.

8 ANALYSIS AND DISCUSSION
This paper opened with a specific research question: when novice
programmers have seen multiple schemas that might apply to a prob-
lem, how does their solution emerge and evolve? All four students
started saying they would use the list template and ended up using

accumulators in some fashion. Whether the students perceived

these as different patterns, or whether they view accumulators as a

variation on the list template, is not evident in our transcripts. How-

ever, all four students commented on the typical base cases of these

patterns, suggesting that they had internalized them separately.

The trigger to use accumulators differed across the students:

StudA and StudB initially associated the accumulator with track-

ing the sum (though StudA lost this association once she started

to thrash); StudC switched without a clear justification and never

stated a purpose for the accumulator (following the schema purely

syntactically). StudD explicitly ruled out an accumulator at first,

then found it useful for tracking clean data. Use of accumulators

was likely influenced by the timing of our Rainfall session. The

course had just covered accumulators: the pattern was fresh and

students may have assumed they should be using them. The lectures

had shown the use of accumulators for summing a list of numbers.

As discussed in section 2, we have not found existing theories

about how novices navigate or switch between multiple schemas.

Observations from our data suggest possible elements of such the-

ories, each raising open questions that would inform a theory.

Observation 1. Students who copy-and-paste the template (as
htdp recommends for beginners) get more stuck than those who recall
the template and write it down “as they go”.

StudA mechanically wrote down the list-of-number template

before thinking about the details of Rainfall. The course teaches

this practice, though once students have mastered the template,

they tend to interleave writing the template with filling in the holes

(particular in easy spots, such as the base case). StudB, StudC, and

StudD all stated that they were going to use the list-of-number

template, but they proceeded to work in “write as you go” fashion,

which meant they started thinking about how they would fill in the

holes around the recursive call to Rainfall before they committed to

calling their function on the rest of the list. These students generally

introduced an accumulator at this point, effectively switching their

program schema mid-session. StudA, in contrast, struggled more

with the schema change and ended up farthest away from aworking

Rainfall solution.

Open Question 1. When students know multiple schemas for
a problem, do those who write out most of one (incorrect) schema
have a harder time adapting their approach than those who reproduce
schemas on the fly?

OpenQuestion 2. Is there a systematic method for helping stu-
dents realize when they might need to switch schemas? Or how to

recognize apriori when a problem needs more than the basic schemas
that they know?

Observation 2. Students who articulated only the syntactic schema
of accumulators, but not the underlying concept, struggled to adapt
them to the needs of Rainfall.

As instructors, it is easy to assume that once students have seen

the idea of a parameter that accumulates a running value, then

they will add as many such parameters as a problem requires. This

assumes that students understood the underlying idea, however,

rather than simply absorbing the syntactic pattern. Students in our

course had only seen examples with a single accumulator param-

eter, and in each of those programs, the value in that parameter

was returned in the base case of the recursion. An accumulator-

based Rainfall solution either needs two parameters (one for the

running sum and one for the running count) or one parameter for

the running list of clean data. Students had only seen examples that

accumulated numbers up to this point in the course. Unless stu-

dents understood the point of the accumulator, adapting to multiple

parameters could be a significant challenge.

Interpreting this in an imperative context, it would be as if stu-

dents had only ever seen programs with a single numeric variable,

and did not immediately realize that they could have two vari-

ables. This is not a confusion that we have seen reported in other

Rainfall studies. In functional programming, additional “variables”

become additional parameters—perhaps that seems more complex

to novices than additional standalone variables (which could be

ignored while still allowing the program to run, whereas additional

parameters need values or a syntax error results). Perhaps students

in the imperative studies of Rainfall made different errors depend-

ing on whether they had seen programs with multiple variables.

The point here is simply that different linguistic constructs have

different affordances and pitfalls, and different courses prepare stu-

dents for problems in subtle ways that we have likely overlooked in

reporting studies. We need to understand our benchmark problems

in multiple contexts to know what makes them challenging.

StudA: I guess [the hardest part] was trying to figure out
how to work in the -1 with the accumulator there because
I didn’t know where to put it [...] all the examples we put
the accumulator after empty [...] but in this one the answer
wasn’t stored in the accumulator.

Observation 3. Students who connected accumulator parame-
ters or parts of their code to specific tasks, and maintained those
connections through the schema switch, produced more correct code.

The two students with clear roles for the accumulator were also

the ones who more generally connected specific problem tasks to

parts of their code. One of these was the only student who men-

tioned using filter to help deal with the negative numbers (though

he never got that part integrated with his accumulator-based pro-

gram for computing the average). These observations reinforce the

idea that failure to decompose problems into tasks—not just fail-

ure to compose code—underlies student challenges with multi-task

problems (others’ work showing that students can handle similar

problems when explicitly taught strategies or patterns supports

this [3, 10]). Had someone suggested decomposing the problem

into separate sum and count functions, we suspect the two weakest

students might well have done better, since their transcripts showed

they did have basic facility with the list template.

Observation 4. Students had not understood that each sub-task
that traverses a list needs its own function or accumulator parameter.

Both htdp and the host course explain that a single recursive

function can perform only one traversal-based operation (this ini-

tially comes up when discussing insertion sort, to explain why

separate functions are needed for insertion and the overall sort).

Our host course did not, however, reinforce this via assignments.

Accumulator parameters enable a single function to track outputs of

multiple tasks in a single traversal, but the course does not currently

teach the explicit link between traversal-tasks and parameters. Our

narratives show students struggling to integrate multiple traversal

tasks (e.g., summing and counting) in a single function, even once

they introduce accumulators. The connections between tasks, pa-

rameters, templates, and traversals are not (or have not been made)

clear enough to these students, yet they seem critical to producing

a correct Rainfall solution in any programming language.

Students similarly struggled to handle the sentinel. All prior

problems in the course terminated a list recursion at the end of the

list, not at a particular value. Most students recognized the sentinel

as another base case for recursion, but they struggled to reconcile

the return values in the empty-list and sentinel cases, especially in

light of the -1. This is again a failure to separate tasks in their code.

Open Question 3. Would more emphasis on the “one task per
function or parameter” rule enable students to solve Rainfall, even if
they hadn’t seen sentinels or multiple accumulator parameters?

The first author has begun teaching students how to identify

tasks and map them to each of functions or parameters/variables as

part of program design. We are in the early stages of studying the

impact on students’ abilities to solve plan-composition problems.

Observation 5. Students thought the problem was complex just
from the problem statement.

Our version of Rainfall has more constraints and detail than

Soloway’s original phrasing, which read:

Write a program that will read in integers and output their
average. Stop reading when the value 99999 is input.

Later versions of the problem have included negative numbers, but

even compared to those, our problem description has additional

details such as: (a) -999 may never appear, (b) -999 may appear

more than once, (c) an explicit instruction to return -1 if the average

cannot be computed, and (d) use of the term “faulty readings” to

contextualize the other negative numbers.

Prior versions of the problem typically omitted instructions on

what to return if there is no data to average (detail (c)). We agree

with Seppälä et al. [15] that this omission makes it hard to interpret

students’ mistakes. While throwing an error would be better than

returning -1, our students had not yet learned error handling.

Details (a) and (b) regarding the sentinel are necessary because

the input comes as a list rather than being entered interactively.

Requiring the list to contain -999 actually complicates the problem

for one who follows htdp (or any datatype-based discipline) strictly.

A list with a guaranteed sentinel would have a different data type

(in which the base case is a list with the sentinel as the first element,

not the empty list); this would lead to a different template. The

current wording retains the schema that students already know.

Taken together, however, all of these details have a price in terms

of how students perceive the problem complexity:

StudC: From what we’ve learned in class we generally
use just simpler problems, and we rarely [...] put them all
together. So when you are approached with a problem such
as this, you almost struggle to figure out how to put it
together ’cause you’ve never done it before. [...] [usually] it
would be more in a Part A, Part B, Part C, Part D style.

Future research should explore relationships between the level of de-

tail in the problem statement, whether examples are provided [15],

and when students perceive sub-tasks in more complex problems:

OpenQuestion 4. Does a more detailed Rainfall description help
students recognize more sub-tasks before they start coding?

OpenQuestion 5. Does providing examples or test cases with the
Rainfall description lead students to recognize more sub-tasks before
they start coding?

9 CONCLUSIONS
Our study data allowed us to ask a unique question in the context

of Rainfall: how do novice students manage having seen multiple

viable schemas for a programming problem? Students do not yet

know the limitations of these schemas well (unlike experts). We

would expect, then, to see students switching schemas or perhaps

trying to merge them. We are not aware of theories of how novices

switch schemas. We need to understand this, however, so we can

teach students how to handle such situations more effectively.

Our data drive home the power—and hold—of previously-seen

patterns for novice programmers. Instructors may think they are

teaching a general approach (such as using an accumulator), but if

students have only seen examples that use that approach in a single

way (such as a single parameter that is returned as the final answer),

they may struggle to adapt patterns to new situations. Approaches

such as subgoal labeling [2] might help counter the syntactic power

of a pattern. In the context of this paper, the key takeaway is that

the class examples instructors choose may inadvertently complicate

problems like Rainfall for students. If we want to know what makes

Rainfall hard or easy, we need to consider the course context at a

finer granularity than has been reported in previous studies.

Our students did not seem to perform as well as those in Fisler’s

study [7]. Our participants had only just started working with

higher-order functions, which many students used in Fisler’s study.

Perhaps curricular differences addressed our observations for Fisler’s

study courses. It would be interesting to run similar talk-alouds

with students at the schools from the original study.

As a community, we can’t claim to have “beaten the Rainfall

problem” [8] until we have findings that we can explain and repro-

duce across courses. This needs studies that report on finer-grained

curricular details and how students draw on them when select-

ing designs. While we continue to work on those, programming

instructors should continue to carry an umbrella.

ACKNOWLEDGMENTS
Work supported by US-NSF Grant No.s 1116539 and 1500039.

REFERENCES
[1] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between

Bottom-Up and Datatype-Driven Program Design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (SIGCSE ’16). ACM, New

York, NY, USA, 205–210. DOI:http://dx.doi.org/10.1145/2839509.2844574
[2] Richard Catrambone. 1998. The subgoal learning model: Creating better examples

so that students can solve novel problems. Journal of Experimental Psychology:
General 127 (1998), 355–376. DOI:http://dx.doi.org/10.1037/0096-3445.127.4.355

[3] Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and

Assessing Programming Strategies Explicitly. In Proceedings of the Eleventh
Australasian Conference on Computing Education - Volume 95 (ACE ’09). Aus-
tralian Computer Society, Inc., Darlinghurst, Australia, Australia, 45–54. http:

//dl.acm.org/citation.cfm?id=1862712.1862723

[4] Sebastian Dziallas and Sally Fincher. 2016. Aspects of Graduateness in Computing

Students’ Narratives. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (ICER ’16). ACM, New York, NY, USA, 181–190.

DOI:http://dx.doi.org/10.1145/2960310.2960317
[5] Alireza Ebrahimi. 1994. Novice programmer errors: language constructs and

plan composition. International Journal of Human-Computer Studies 41 (1994),
457–480.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[7] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth An-
nual Conference on International Computing Education Research (ICER ’14). ACM,

New York, NY, USA, 35–42. DOI:http://dx.doi.org/10.1145/2632320.2632346
[8] Mark Guzdial. 2010. A Challenge to Computing Education Research: Make

Measurable Progress. https://computinged.wordpress.com/2010/08/16/

a-challenge-to-computing-education-research-make-measurable-progress/.

(Aug. 2010). Accessed April 14, 2017.

[9] Päivi Kinnunen and Beth Simon. 2012. Phenomenography and grounded theory

as research methods in computing education research field. Computer Science
Education 22, 2 (June 2012), 199–218. DOI:http://dx.doi.org/10.1080/08993408.
2012.692928

[10] O. Muller, B. Haberman, and D. Ginat. 2007. Pattern-oriented instruction and its

influence on problem decomposition and solution construction. In Proceedings of
ITiCSE.

[11] Peter L. Pirolli and John R. Anderson. 1985. The Role of Learning from Exam-

ples in the Acquisition of Recursive Programming Skills. Canadian Journal of
Psychology/Revue canadienne de psychologie 39, 2 (1985), 240–272.

[12] Peter L. Pirolli, John R. Anderson, and Robert G. Farrell. 1984. Learning to program
recursion. 277–280.

[13] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989),
389–414.

[14] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A

Comparison of Novice and Intermediate Student Programmers. Hum.-Comput.
Interact. 6, 1 (Mar 1991), 1–46.

[15] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen. 2015.

Do We Know How Difficult the Rainfall Problem is?. In Proceedings of the 15th
Koli Calling Conference on Computing Education Research (Koli Calling ’15). ACM,

New York, NY, USA, 87–96. DOI:http://dx.doi.org/10.1145/2828959.2828963
[16] Simon. 2013. Soloway’s Rainfall Problem Has Become Harder. Learning and

Teaching in Computing and Enginering (2013), 130–135. DOI:http://dx.doi.org/10.
1109/LaTiCE.2013.44

[17] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms

and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858.

[18] Juha Sorva and Arto Vihavainen. 2016. Break Statement Considered. ACM
Inroads 7, 3 (Aug. 2016), 36–41. DOI:http://dx.doi.org/10.1145/2950065

[19] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers.
Morgan Kaufmann Publishers Inc., 543–549.

[20] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,

Explaining and Code Writing Skills in the Novice Programmer. In Computing
Education Research Workshop (ICER). 117–128.

[21] Jacqueline Whalley and Nadia Kasto. 2014. A Qualitative Think-aloud Study

of Novice Programmers’ Code Writing Strategies. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education (ITiCSE
’14). ACM, New York, NY, USA, 279–284. DOI:http://dx.doi.org/10.1145/2591708.
2591762

http://dx.doi.org/10.1145/2839509.2844574
http://dx.doi.org/10.1037/0096-3445.127.4.355
http://dl.acm.org/citation.cfm?id=1862712.1862723
http://dl.acm.org/citation.cfm?id=1862712.1862723
http://dx.doi.org/10.1145/2960310.2960317
http://www.htdp.org/
http://dx.doi.org/10.1145/2632320.2632346
https://computinged.wordpress.com/2010/08/16/a-challenge-to-computing-education-research-make-measurable-progress/
https://computinged.wordpress.com/2010/08/16/a-challenge-to-computing-education-research-make-measurable-progress/
http://dx.doi.org/10.1080/08993408.2012.692928
http://dx.doi.org/10.1080/08993408.2012.692928
http://dx.doi.org/10.1145/2828959.2828963
http://dx.doi.org/10.1109/LaTiCE.2013.44
http://dx.doi.org/10.1109/LaTiCE.2013.44
http://dx.doi.org/10.1145/2950065
http://dx.doi.org/10.1145/2591708.2591762
http://dx.doi.org/10.1145/2591708.2591762

	Abstract
	1 Introduction
	2 Related Work
	3 Background: The Rainfall Problem
	4 Background: the How to Design Programs Curriculum
	5 Rainfall under htdp
	6 Study Logistics
	7 Narratives
	7.1 StudA
	7.2 StudB
	7.3 StudC
	7.4 StudD

	8 Analysis and Discussion
	9 Conclusions
	Acknowledgments
	References

