
Incidence of Einstellung Effect among Programming Students and its
Relationship with Achievement

Jun Rangie C. Obispo
 Department of Computer Science

 Xavier University – Ateneo de Cagayan

 Cagayan de Oro City, Philippines

 jobispo@xu.edu.ph

Francis Enrique Vicente G. Castro
 Department of Computer Science

 Worcester Polytechnic Institute

 Worcester, Massachusetts, USA

fgcastro@wpi.edu

Ma. Mercedes T. Rodrigo
Department of Information Systems and

Computer Science

 Ateneo de Manila University

 Quezon City, Philippines

mrodrigo@ateneo.edu

ABSTRACT

The Einstellung effect (EE) refers to an individual’s bias towards a

familiar, working solution when solving problems even though

more appropriate solutions are available. Prior studies have shown

that this fixation may pose some problems when the known solution

can no longer be used because this prevents one from being able to

generate other solutions. In this paper, we investigate EE in the

context of programming and how this phenomenon affects the

performance of student programmers in a single laboratory

experiment. We observed that about 33% of the students exhibited

a full incidence of EE where solutions to three problems used the

same category of approaches. Twenty-four percent of students

exhibited partial EE, where two of three problems had similar

approaches. Forty-two percent of students did not exhibit EE at all.

We also observed that students with higher pre-test scores exhibited

more incidences of EE. Those who exhibited more EE also

performed better in solving the programming problems in terms of

the number of correctly implemented plans. This study shows that

EE has a positive effect on the performance of student

programmers, at least in a single programming activity. This opens

opportunities to further explore the effect of EE on the overall

performance of students in programming.

CCS CONCEPTS

Social and professional topics → Professional topics → Computing

education → Computing education programs → Computer science

education

KEYWORDS

Einstellung effect; Experience bias; Computer programming.

ACM Reference format:

Jun Rangie C. Obispo, Francis Enrique Vicente G. Castro and Ma.

Mercedes T. Rodrigo Surname. 2018. Incidence of Einstellung Effect

among Programming Students and its Relationship with Achievement. In

Proceedings of Information and Computing Education Conference (ICE

2018), Cebu City, Philippines, 8 pages.

1 Introduction

The Einstellung Effect (EE) refers to an individual’s bias towards

a familiar, working solution to solve problems even though more

appropriate solutions are available [9, 10]. EE is a fixedness on a

problem solving method because of prior experience, hindering a

more appropriate formulation of solution [1, 2, 11].

In the context of programming, EE poses problems because

programmers tend to utilize familiar and possibly ineffective

solutions. Reuse, however, is not necessarily negative. Indeed,

code reuse is supported and encouraged to speed up software

development and minimize both effort and the probability of error.

For example, experienced programmers reuse “canned solutions”

to previously encountered problems when solving new ones [12].

Programmers regularly employ known programming constructs,

built-in functions, and algorithms when they encounter unfamiliar

problems [6, 7].

This study aims to investigate the implications of EE among student

programmers, particularly on their selection and construction of

plan structures in addressing similar problems. This study focuses

on the fixation on approaches they use to solve programming

problems and how an intervention affects this fixedness.

Specifically, we ask the following questions:

1. To what extent do programmers exhibit EE?

2. How does the order of programming problems affect the

incidences of EE?

3. What is the relationship between programmer expertise and
the incidences of EE?

4. What is the relationship between the incidences of EE and

student performance?

5. How does an intervention affect the incidences of EE?

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

ICE2018, October 2018, Cebu City, Philippines

© 2018 Copyright held by the owner/author(s).

https://doi.org/10.1145/1234567890

ICE2018, October 2018, Cebu City, Philippines J. Obispo et al.

2 Related Work

2.1 The Einstellung Effect

The Einstellung Effect is a psychological phenomenon wherein

one forms a bias towards a familiar, working solution to solve other

problems even though more appropriate solutions are available [9,

10].

The study of this phenomenon was started by Luchins [9] in his

water-jug experiment. Test subjects were asked to come up with a

combination of three water jugs, say A, B, and C, in order to reach

a desired quantity of water. In this experiment, the first group was

exposed to ten problems, where, for each problem, the desired

quantity and water jug capacities are different. For the first few

problems, the participants were able to discover a formula (B-2C-

A) that could be used to reach the goal. In the next few problems, a

simpler formula (A+C) can be used to solve the problems.

However, majority of the test subjects stuck to the previous and

complex formula in trying to solve the problems, failing to see a

simpler solution that was available. Moreover, many of the subjects

failed to answer the last problem where the complex formula can

no longer be used, but the simpler one would. Notably, the solution

they know that worked stuck to them and they tried to use this

solution to solve all other problems, making them unable to see a

simpler solution, and even leaving them unable to answer problems

that required simpler solutions.

The second group of test subjects in [9] were exposed only to the

last five (5) problems that were given to the first group and notably

very few of them used the complex formula to solve the problems,

and only few were unable to solve some of the problems. The

fixation that was exhibited by the first group was less seen in the

second group.

Evidences of fixedness have been noticed in the context of

programming. Plans used by programmers are actually reused,

based from their experience [12]. When addressing unfamiliar

problems, novices bank on known programming constructs, built-

in functions, and algorithms [6, 7]. These evidences, however,

pertain only to incidences where programmers rely on experience

in addressing problems – and these experiences tend to be helpful.

The negative implications of experience bias need further

investigation.

2.2 Plan Composition

Soloway investigated the problem solving strategies of

programmers by looking into their plan compositions [12]. A plan

refers to the organization and clustering of the subtasks of a

problem [3] and is referred to by Soloway as a “canned solution”

that a programmer knows to address a given problem [12].

Complex problems may be decomposed into several subproblems,

each with their own plans. The combination of these various plans

to create a single, comprehensive plan is known as plan

composition.

Various programming problems have been used to study plan

composition among novice programmers. We use some of these

problems in this study. One is the Rainfall problem [12] described

below:

Write a program that will read in integers

and output their average. Stop reading when

the value 99999 is input.

Another problem that appears to be different but actually has an

almost isomorphic plan structure with Rainfall is the TF problem

[12]:

Write a program that will output ‘T’ if all

the inputs are ‘T’, but output ‘F’ if there

is just one ‘F’ in the input sequence. Stop

reading when ‘#’ is input.

Lastly, the Adding Machine problem [4] is described as follows:

Design a program called adding-machine that

consumes a list of numbers and produces a list

of the sums of each non-empty sublist

separated by zeros. Ignore input elements

that occur after the first occurrence of two

consecutive zeros.

This study takes interest on the possible relationship of the plan

structures used by the programmers to solve the three problems

above (Rainfall, TF, and Adding Machine) if they are given in

succession. A potential scenario is that the programmer will use a

single loop to solve the Rainfall problem, and will use the same

approach to solve the TF and the Adding Machine problems. This

fixation may help in being able to solve the TF problem, but may

pose difficulties in addressing Adding Machine.

Though Jones cited some techniques to manage EE [8], these

interventions occur at the level of course design such as the

examples given throughout the course. This study looks into

suggestions that will prevent or minimize this phenomenon in a

particular single programming activity setting.

We are interested in investigating EE in the context of

programming. To do that, we examined students’ plan composition

in solving a series of programming problems that could be solved

with similar approaches -. We see if some extent of fixedness would

be a factor in being able or unable to solve the given problems.

Given the coding schemes employed by Castro and Fisler [4, 7],

this study investigates the similarities of the plan structures of the

programs of the students. Three programming problems were used

where the plan structures show similarities: (1) the Rainfall

problem as coined by Soloway [12]; (2) TF problem as still

suggested by Soloway [12]; and lastly, the Adding Machine used

by Castro and Fisler [4].

The choice for the Rainfall and TF problems is mainly because of

the unobvious isomorphism of their plan structures. Looking at the

problem statements alone, they seem to be very different. However,

the plan compositions are “almost” identical. As [12] pointed out,

both of the problems require a sentinel to stop reading input, the

Rainfall problem requires an accumulator for the sum while the TF

problem needs a flag that will set/reset depending on the input, and

Incidence of Einstellung Effect among Programming Students and

its Relationship with Achievement
ICE2018, October 2018, Cebu City, Philippines

both problems guard if there is no input given to give appropriate

output.

The Adding Machine problem, on the other hand, may look similar

to the Rainfall problem because they both need to accumulate sums

and require a sentinel to terminate input, but the former has more

intricate plan composition. The Adding Machine needs to separate

sublists (separated by 0), and just accumulate the sum for each

sublist. In addition, the solution needs to accumulate the sums of

the sublists. Although, the same approach could be used to solve

the Rainfall and Adding Machine problems (including the TF

problems), composing the plans need subtle differences.

3 Methodology

3.1 Participants

Participants of this preliminary study were seventy-three (73)

sophomore to senior computer science and information technology

students from two universities in Mindanao: Xavier University –

Ateneo de Cagayan in Cagayan de Oro City and Central Mindanao

University in Bukidnon. Students from some programming courses

from these universities were asked to be the participants. 49

(67.12%) of the participants were male and 24 (32.88%) were

female.

3.2 Experiment Setup

The experiment started with a briefing about the general flow of the

experiment and the participants answered pre-test questionnaires

that aims to assess their knowledge in the basics of programming.

Questions included the topics on basic I/O, control structures, and

arrays.

Afterwards, the participants were asked to solve the three

programming problems. Students were given forty minutes to solve

each problem. After the allotted time, their source code should be

uploaded to a submission link provided, and they will then proceed

to the next problem. The specific problem statements are given in

the next subsection.

Two treatments were given to the participants: (1) with and without

intervention, and (2) original order of the problems and re-ordered

problems.

After the programming activity, students were asked to complete

an exit survey where they briefly discussed their solutions and other

possible solutions to the problems given.

3.3 Programming Problems

3.3.1 The Rainfall Problem. Design a program called rainfall

that takes in a series of numbers representing daily rainfall amounts

as entered by the user. The input terminates once the number -999

is entered. Compute for the average of the non-negative values

from the input. There may be negative numbers other than -999 in

the input.

Sample input test cases are: (a) 41, 675, 72, 244, -9, 482, -1, 0, -

999; (b) -4, -66, -90, -999; and (c) -999.

Output for the test cases above are: (a) 252.33; (b) cannot compute

for average; and (c) cannot compute for average

3.3.2 The TF Problem. Write a program that will output ‘T’ if

all the inputs are ‘T’, but output ‘F’ if there is just one ‘F’ in the

input sequence. Otherwise, output ‘X’. Stop reading when a ‘#’ is

input.

Sample input test cases are: (a) T, T, T, T, #; (b) T, F, T, T, #; (c)

T, F, T, F, T, T, #; and (d) #.

Output for the test cases above are: (a) T; (b) F; (c) X; and (d) no

input.

3.3.3 The Adding Machine Problem. from the user and

produces a list of the sums of each non-empty sublist separated by

zeros from the input. Stop input after the first occurrence of two

consecutive zeros.

Sample input test cases are: (a) 9, 5, 7, -3, 2, 0, 3, 5, 0, 0; (b) 5, 6,

0, 0; and (c) 0, 0.

Output for the test cases above are: (a) 20, 8; (b) 11; and (c) no

input.

3.4 Plan Structure Coding

To better look into the plan composition of the submitted programs,

the plan structures were coded. The coded plans would help us see

better the similarities of how plans were composed to solve the

problems. The required plans or tasks are taken from Castro, Fisler,

Ebrahimi, and [4, 5, 7, 12] while the methods for coding the plans

structures are adapted from Fisler [7].

3.4.1 Required Plans. Table 1 shows the required plans to solve

the problems. However, students may use additional plans should

they wish.

Table 1: Plans and Codes for the Programming Problems

Plan Purpose Code

Rainfall Problem

Read Read input from user R

Sentinel Stop input if sentinel value T

Negative Ignore negative inputs N

Sum Total the non-negative inputs S

Count Count the non-negative inputs C

DivZero Guard against division by zero D

Average Average the non-negative inputs A

Output Print the average O

TF Problem

Read Read inputs from user R

Sentinel Stop data input after the “#” T

InvInput Ignoring invalid input (not “T”s and

“F”s)

I

Flag Check how many “F” in input F

Size Check if T/Fs were entered S

Output Display proper output O

Adding Machine Problem

ICE2018, October 2018, Cebu City, Philippines J. Obispo et al.

Read Read inputs from user R

Sentinel Stop data input after the double-zero T

Sublists Identifying sublists separated by

single zeros

L

Sum Summing the elements in each

sublist

S

OutputBuild Building the output list from the

sums of the sublists

B

Output Display sums O

3.4.2 Operators. To denote how the plans are composed to

create one working solution to the problem, we use the following

operators. The symbols enclosed in parenthesis for each operator

are used in the coding.

 Sequential (;) – plans are executed in order; after the execution

of plan A, plan B automatically follows.

 Interleaved (&) – plans are weaved together; after some code

in plan A is executed, some code in plan B is executed;

similarly, after some code in plan B is executed, some code in

plan A is executed.

 Parallel (|) – plans can be executed in either order; the

execution of plan A does not affect the execution of plan B.

 Guarded (→) – the execution of plan A affects the execution

plan B; used to denote conditions or branches

3.4.3 Sample Approaches and Coding. The three problems

could be solved in multiple approaches. Two of the most common

approaches are the Single-Loop and the Input-First. One of the

mentioned approaches, the Single-Loop approach, is presented as

an illustration for the three problems. The pseudocodes are shown

in Figure 1.

repeat until find sentinel {

 get input

 if input is non-negative

 increment count

 add it to running sum

}

if count is at least 1

 compute the average as sum/count

 output average

else report “no data”

(a) Rainfall Problem

repeat until find sentinel {

 get input

 increment size

 if input is “F”

 increment flag

}

if size greater 0

 if flag = 0

 output “T”

 else if flag = 1

 output “F”

 else

 output “X”

else

 output “no data”

(b) TF Problem

repeat until two succeeding zeros{

 get input

 if input = 0

 increment count of succ zeros

 if count of succ zero = 0

 inc counter of sums list

 else

 reset count of succ zeros

 add input to current sum

}

(c) Adding Machine Problem

Figure 1: Single-Loop Approach

The sample set of Single-Loop approach pseudocodes above can

then be coded as follows, as shown in Table 2.

Table 2: Sample Plan Structure Codes

Problem Single Loop

Rainfall (T→(R;(N→(C|S))));D→(A;O)

TF (T→(R ; F & I)) ; S → O

Adding Machine (T→ (R ; (L → (S | B))) ; O

The solution to the Rainfall problem presented in Figure 1 begins

by asking for an input (R). Then the input is checked whether it is

non-negative or not (N). If it is, the counter for how many inputs

were taken is incremented, and the input is added to the running

sum (N→(C|S)). Incrementing the counter and accumulating the

sum can be in any order, hence C|S. This continues until the sentinel

is encountered, i.e. the sentinel guards the execution of these plans

(T→(R;(N→(C|S)))). Once the sentinel is encountered, the loop

terminates. The program then checks if there was at least one input

to guard against division by zero (D). If there is at least one non-

negative input, the average is computed and printed (D→(A;O)).

This gives the final plan structure code of the Rainfall solution

presented as (T→(R;(N→(C|S)))); D→(A;O).

The TF problem is coded similarly. The sentinel guards the

execution of the reading of input, flagging of the value for “T”/ “F”/

“X”, and ignoring of invalid inputs (T→(R ; F & I)). Then the

program checks if there was at least one valid input, and then

appropriate output is displayed (S→O). Hence, the code for this

solution is (T→(R ; F & I)) ; S → O.

Lastly, the Adding Machine, although it has a similar solution, the

composition of plans is more intricate specially in the part of

determining sublists separated by zeros. The whole loop is still

guarder by the sentinel (T). Inside the loop, the inputs are taken (R).

Then for every input, the program determines if it must separate the

sublist, i.e., a single 0 is encountered (L). If the input still belongs

to the current sublist, the input is added to the running sum of the

current sublist. If the current input is 0, then the list of sums of

Incidence of Einstellung Effect among Programming Students and

its Relationship with Achievement
ICE2018, October 2018, Cebu City, Philippines

sublists is built (B). Hence, we get the coding for this block as L→

(S | B). The entire loop therefore is coded as (T→(R ; (L→(S|B))).

Then, the output is simply displayed, leaving the final plan structure

code as (T→(R ; (L→(S | B))) ; O.

4 Results and Discussion

4.1 Sample Incidence of Einstellung Effect

For this subsection, we present an example of an incidence of EE.

We quantify an incidence of EE by counting how many of the

problems are under the same category of approach. A student is said

to have exhibited a full incidence of EE if he/she makes use of the

same or similar approach for all three solutions. A student is said to

have exhibited partial incidence if two of the three solutions are

similar. Students whose solutions to the three problems are

different are said to have no incidence of EE. Figure 2 below

illustrates a sample of an incidence of a full-EE from a participant

of the study. Some parts of the code are omitted for brevity like

variable declarations, etc.

public static void main(String[] args){

 …

 do{

 S.o.print("Enter: ");

 input = in.nextDouble();

 if (input>=0){

 flag=1;

 count++;

 sum += input;

 }

 else continue;

 } while(input!=-999);

 if (flag == 0){

 S.o.p("Can’t compute average");

 }

 else

 S.o.p(sum/count);

}

(A) Rainfall problem

public static void main(String[] args){

 …

 do{

 counter++;

 System.out.print("Enter: ");

 input = in.next().charAt(0);

 if(input == 'F'){

 flag++;}

 }while(input != '#');

 if(flag == 0 && counter != 0){

 System.out.println("T");}

 if(flag == 1){

 System.out.println("F");}

 if(flag > 1){

 System.out.println("X");}

 if(counter == 0){

 System.out.println("No input");}

}

(B) TF problem

public static void main(String[] args){

 …

 do{

 System.out.print("Enter: ");

 input = in.nextInt();

 if(input == 0){

 flag++;

 if(flag!=1)

 sums.add(sum);

 sum = 0;

 }

 else{

 counter ++;

 flag = -1;

 sum += input;

 }

 }while(flag!=1);

 if(counter==0){

 System.out.println("No input");

 }

 else{

 for(int a=0 ; a<sums.size(); a++){

 S.out.print(sums.get(a) + ", ");

 }

 }

}

(C) Adding Machine problem

Figure 2: Sample Full Incidence of Einstellung Effect

The figure above shows a full incidence of EE. All the solutions are

under the category Single-Loop. The plan structure coding of the

programs above is shown in Table 3.

Table 3: Coded Plan Structures of the Sample Incidence

Problem Plan Structure Code

Rainfall (T→(R; N→C;S)); D→(O&A)

TF (T→(R; F&I)); S→O

Adding Machine T→(R; L→B&S); O

The solutions presented in Figure 2 and Table 3 used the Single-

Loop approach. All reading of input and necessary processing of

the data were done in a single loop. After the sentinel was

encountered, i.e. end of input, the corresponding output were

displayed. Plans in boldface from Table 3 highlights the single loop

that corresponds to the main loop presented from the programs

from Figure 2.

4.2 Incidences of Einstellung Effect

We observed EE in the plan structures of the students because

similar approaches were used in solving the problems given. Table

4 shows the count for the incidences of EE, broken down further

per classification of the students as either novice (pre-test score ≤

7) or intermediate (pre-test score > 7).

ICE2018, October 2018, Cebu City, Philippines J. Obispo et al.

Table 4: Breakdown of incidences of EE

Group Full Partial None Total

Students

Novice 9

(22.50%)

8

(20.00%)

23

(57.50%)

40

Intermediate 15

(45.45%)

10

(30.30%)

8

(24.25%)
33

Total

Incidences

24

(32.88%)

18

(24.66%)

31

(42.46%)
73

Majority of the students who did not exhibit EE (none) committed

both logical and syntactic errors, and thus failed to implement the

required plans correctly. Because of the number of errors, their

solutions are categorized under “Error”. Further, solutions

categorized under “Error” were not considered as the “same

approach”. This means that, for example, a student has all three

solutions tagged under the “Error” category, the incidence of EE is

under “None”.

Comparing the incidences of the two groups (novice and

intermediate programmers), the intermediate programmers have

exhibited more incidences compared to the novices. Using a t-test,

we find a significant difference between the two groups (𝑡 𝑠𝑡𝑎𝑡 =

−3.03; two-tailed 𝑡 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1.99; two-tailed 𝑝 = 0.003; 𝛼 =

0.05). We discuss further the relationship between the pre-test and

the incidences of EE in Section 4.4.

4.3 Order of Problems and Incidence of EE

We determined whether the order of the problems has an effect on

the incidences of EE. The participants were divided into two groups

where each group answered the problems in different orders. The

incidences for both groups were compared using a t-test. We found

out that the order of the problems has a significant effect on the

incidences of EE (t stat=2.36; two-tailed t critical = 1.99; two-tailed

p=0.02; α=0.05).

The order of the problems was Rainfall, TF, and Adding Machine

for Order X; then Adding Machine, Rainfall, and TF for Order Y.

The means of the incidences of EE of the two groups are

𝜇𝑂𝑟𝑑𝑒𝑟 𝑋 = 1.8 and 𝜇𝑂𝑟𝑑𝑒𝑟 𝑌 = 1.09. This shows that Order X has

exhibited more incidences of EE. This could be attributed to the

nature of the problems. In Order X, the first and second problems

(Rainfall and TF) have isomorphic plan structures [12], i.e. the plan

composition of the two problems have very similar structures.

When the programmer has used an approach to solve the Rainfall

problem, and used the same approach to TF and it worked, the same

approach may have been used then to solve the last problem, the

Adding Machine. Some students were successful when they used

an “almost same approach” in solving the Rainfall and TF

problems. A successful attempt is defined as having the program

with at least four (4) plan errors only for both problems already

while an “almost same approach” is defined as the use of

approaches under the same category, e.g. Single-Loop, but may

have two to four differences in the plan composition. The success

rate is 60%, i.e., 15 successful attempts out of 25 total attempts.

In the case of Order Y, the first problem (Adding Machine) and

second problem (Rainfall) have slightly different plan structures.

The Adding Machine requires more intricate composition of the

plans such as ignoring sublist delimiting zeros and summing up all

values in the sublist. This difference may not trigger the students to

use a similar approach to solve the second problem (Rainfall). None

of the students from this group could solve the Adding Machine

problem. However, those who tried a different approach for the

Rainfall problem had a success rate of 23%, i.e., 3 out of 13 could

do better with the Rainfall problem using a different approach than

the Adding Machine problem. A different approach for the

problems is determined if the approaches do not fall under the same

category.

4.4 Programmer expertise and Incidence of EE

We now consider how the expertise of the programmers,

determined by their pre-test scores, affect the incidences of EE. We

found out that there is a significant positive correlation between the

pre-test score and the incidence of EE (𝑟 = 0.47; 𝑝 = 0.05; t-value

= 4.46 while t-crit=1.99), i.e., the higher the pre-test score of the

student programmer, the higher incidence of EE the student

exhibits.

It was assumed that those with lower pre-test scores would find it

harder to solve the problems, thus sticking to similar approach used

on the previous problems. However, for this case, it is the other way

around. Those with higher pre-test tend to use the same approach.

Better background in the concepts of programming may not

translate to the use of other possible approaches in solving other

problems. Higher pre-test also translated to more plans correctly

implemented, hence, students might not need to change the

approach in solving the problems. This suggests that better

equipped programmers tend to reuse known existing solutions, and

will just fashion it to solve current problems. Since the same

approach would still work, they need not use other approaches.

Novices, on the other hand, might have involved trial and error in

using various approaches in solving the problems. We discuss

further the relation of EE and how the students performed in the

programming problems in the next subsection.

4.5 Incidence of EE and Student Performance

We are interested in how EE affects the performance of the students

in solving the last problem. The students were grouped according

to the order of the problems and analysis shows that the incidences

of EE have a significant positive correlation for both orders: Order

X (𝑟 = 0.41; 𝑝 = 0.05; t-value = 3.87; t-crit=2.02; 𝑛 = 40) and

Order Y (𝑟 = 0.61; 𝑝 = 0.05; t-value = 6.49; t-crit=2.04; 𝑛 =

33).

For the Order X, the first two problems have isomorphic plan

structures [12]. As discussed in Section 4.3, successfully (or

almost) solving the Rainfall problem would help them solve the TF

problem. Applying the same solution then to the last problem

(Adding Machine), they could fashion the approach that could

Incidence of Einstellung Effect among Programming Students and

its Relationship with Achievement
ICE2018, October 2018, Cebu City, Philippines

solve the problem. With little differences in the composition of

plans, the Adding Machine problem is still “solvable” using the

same approach they used to solve the previous problems. Out of the

20 full-EE incidences under Order X, 5 (25%) performed good, i.e.,

they were able to run their programs. On the other hand, 1 of 5

(20%) performed good when using a different approach for the

third problem, i.e. Rainfall and TF problems were categorized

under the same approach while Adding Machine is under different

a different category.

However, in the case of Order Y, the first two problems have

different plan structures (Adding Machine and Rainfall). Although,

similar approaches can be used, but composition of the plans would

be different. For this group, only 4 had full EE and 3 (75%) did

better in solving the last problem with an approach similar to the

previous. Further, it should be noted that none of these students

were able to perform well on the first problem (Adding Machine).

They did better on the second problem (Rainfall) and the third

problem (TF) with average correctly implemented plans as 4.5

(perfect score of 8) and 4 (perfect score of 6) respectively. We could

look at this as an incidence where on the first problem, they still

could not figure a good approach to solve the problem. Then on the

second problem, they were able to do better, and have applied a

similar approach to the last problem.

In sum, we could say that EE might have helped the students in

solving the problems. Having experience with the approaches they

used helped them fashion these approaches to solve the problem

they were solving.

4.6 Intervention and Incidence of EE

Finally, we look into how the intervention, in the form of a short

video presenting some approaches in solving the Rainfall problem,

affects the incidence of EE. Comparing the incidences for the group

with and without intervention, we see a significant difference

(𝑡 𝑠𝑡𝑎𝑡 = −1.08; two-tailed 𝑡 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1.99 ; two-tailed 𝑝 =

0.29; 𝛼 = 0.05). Further, Set B, the group with the intervention,

has exhibited more incidences of EE.

The results show that the video did not “break” the fixation of the

students with a particular approach is solving the problems. The

video presented two possible approaches to solve the Rainfall

problem: the common approach Single-Loop, and another approach

Input-First. Even though the students were exposed to another

possible strategy, it might not have compelled them to indeed use a

different one. They knew that the approach they used worked, and

they did not need to find another one. Further, some students who

had the intervention said they used a similar approach for the third

problem (Adding Machine for Order X and TF for Order Y) with

that of the previously given problems.

5 Conclusion and Future Work

EE is defined as a phenomenon where one is fixated to a solution

that already works, and will try to use this known solution to other

problems even though more appropriate solutions are available. As

previous studies in EE suggests, we suspected that it would be bad

for novice programmers because fixedness to a particular approach

may hinder them in solving other problems.

In this study, we investigate EE in the context of computer

programming. Specifically, we wanted to find out to what extent to

student programmers exhibit EE, how does programmer expertise

relate to EE, how does EE relate to the performance of the students,

and how does an intervention affect the incidences of EE.

We found out that 32.88% of the students used the same approach

in solving all the three problems, while 24.66% used the same

approach to solve at least two problems. These two combined

shows that a majority (57.54%) of the students exhibited this

phenomenon to some extent, as to only 42.46% have not used the

same approach to any of the problems. We can attribute these

incidences to EE since students can use other solutions but stuck to

what they used, as what they mentioned in the exit survey.

On the order of how the problems were given, those who answered

in the original exhibited more incidences of EE than those who

answered the re-ordered sequence. This could be attributed to how

the nature of the problems affected the way students have solved

the problems.

We also found out that students with higher pre-test scores tend to

have higher incidences of EE as well. This suggests that better

programmers use more often the same approach to solve

programming problems. Further, we also found out that using the

same approach to solve the problems helped students do better in

solving the given problems.

Comparing the incidences of EE between those who have

undergone and have not undergone the intervention in the form of

a short video presentation shows a significant difference. Those

who had the intervention, in fact, exhibited more incidences of EE.

The video, which presented two possible approaches in solving the

Rainfall problem, did not compel them to use another approach.

This could also be because using the same approach helped them to

perform better.

There are several factors that might have influenced the study’s

outcome. First, this study has gathered only 73 students from

Xavier University – Ateneo de Cagayan (XU) and Central

Mindanao University (CMU). Further, those from XU are BSCS

students while those from CMU are BSIT students. This diversity

of background of the participants may have something to do with

how they have fared in the research. Students from XU have

undergone already two programming courses and a course in

object-oriented programming while those from CMU only had one

introductory programming course.

Second, we also limited the programmer expertise only to the pre-

test scores. Other factors may come into play on the expertise of the

programmers especially that the participants come from various

backgrounds.

ICE2018, October 2018, Cebu City, Philippines J. Obispo et al.

Third, the experiment runs for three complete hours, not

considering a possible delay in starting the experiment or some

other problems. Giving of instructions, answering the pre-test,

solving the programming problems, and answering the exit survey

were all packed in the single experiment setup. All these activities

packed within three hours may have stressed the students as some

of them said in the exit survey that they needed more time.

Fourth, the exit survey asked broad questions asking the students to

describe their solutions and another possible solution to the

problems. Majority of the students pointed out the use of other

programming constructs like arrays, loops, etc., or other possible

algorithm, but were not really elaborate on their statements. This

could be because students were already rushing to complete this

survey just to finish the experiment.

Therefore, we recommend the following for future studies. First,

we recommend having this study conducted with participants

having similar background like CS students only.

Second, we suggest broadening the definition of programmer

expertise by including other aspects like final grades in

programming courses, how long they have been programming,

number of languages known, programming habits, etc.

Third, we also recommend a deeper analysis on the plan errors and

how EE could have affected them. A lot of the participants failed

to give sensible solutions to the problems. These solutions were

tagged under one category (Error), but they could be further

investigated why some of these required plans were wrongly

implemented, or missing to be exact.

Fourth, we suggest that pre-experiment proper activities, i.e.

orientation, demographics and pre-test, could be done on a separate

session or allotting more time for the experiment so that things

would not need to be rushed.

Fifth, we recommend having exit survey questions fashioned to

really validate how they could use another approach in solving the

problems. If they could not, more accurate questions could be asked

to know if it is really the Einstellung effect that made them unable

to do so.

Lastly, this study looked at this phenomenon on a series of

programming problems only. We suggest extending this study

covering a longer period, and focusing more on novice

programmers, i.e., those who have just started to learn how to

program. Focusing on these programmers would help us see better

how does EE really affect the learning of computer programmers.

ACKNOWLEDGMENTS

The authors would like to thank Engr. Gerardo Doroja, Rhea

Suzette Mocorro, Jessie Lagrosas of Xavier University - Ateneo de

Cagayan, and May Marie Talandron, Charles Hanz Bautista and

Kent Levi Bonifacio from Central Mindanao University for

allowing the conduct of this study to their students. We are also

very grateful to the participants who have given their time, effort,

and talent for the completion of this study. This study will not be

successful as well without the financial support from the

Department of Science and Technology Engineering Research and

Development for Technology.

REFERENCES

[1] Bilalić, M. and McLeod, P. 2014. Why good thoughts block better ones. Scientific

American. 310, 3 (2014), 74–79.

[2] Bilalic, M., McLeod, P. and Gobet, F. 2008. Why good thoughts block better

ones: The mechanism of the pernicious Einstellung (set) effect. Cognition. 108,

3 (Sep. 2008), 652–661.

[3] Castro, F.E.V.G. 2016. Pedagogy and Measurement of Program Planning Skills.

Proceedings of the 2016 ACM Conference on International Computing Education

Research (2016), 273–274.

[4] Castro, F.E.V.G. and Fisler, K. 2016. On the Interplay Between Bottom-Up and

Datatype-Driven Program Design. Proceedings of the 47th ACM Technical

Symposium on Computing Science Education (New York, USA, 2016), 205–210.

[5] Ebrahimi, A. 1994. Novice programmer errors: Language constructs and plan

composition. International Journal of Human-Computer Studies. 41, 4 (1994),

457–480.

[6] Fidge, C. and Teague, D. 2009. Losing Their Marbles: Syntax-Free Programming

for Assessing Problem-Solving Skills. Proceedings of the 11th Australasian

Conference on Computing Education (Australia, 2009), 75–82.

[7] Fisler, K. 2014. The recurring rainfall problem. Proceedings of the 10th Annual

Conference on International Computing Education Research (New York, USA,

2014), 35–42.

[8] Jones, M. 2007. The Redesign of the Delivery of an Introductory Programming

Unit. Innovation in Teaching and Learning in Information and Computer

Sciences. 6, 4 (2007), 169–182.

[9] Luchins, A.S. 1942. Mechanization in problem solving - the effect of Einstellung.

Psychological Monographs. 54, 6 (1942).

[10] Luchins, A.S. and Luchins, E.H. 1959. Einstellung Effect in Social Learning. The

Journal of Social Psychology. 55, 1 (1959), 59–66.

[11] McCloy, R., Beaman, C.P., Morgan, B. and Speed, R. 2007. Training Conditional

and Cumulative Risk Judgements: The Role of Frequencies, Problem-structure

and Einstellung. Applied Cognitive Psychology. 21, 1 (2007), 325–344.

[12] Soloway, E. 1986. Learning to Program = Learning to Construct Mechanisms and

Explanations. Communications of the ACM.

