Towards a Theory of HtDP-based Program-Design Learning

Francisco Enrique Vicente G. Castro
Department of Computer Science
Worcester Polytechnic Institute
Worcester, Massachusetts, USA
fgcastro@cs.wpi.edu

ABSTRACT

Program-design is an essential skill students in introductory com-
puting courses must learn, but which continues to be difficult for stu-
dents. Many introductory curricula focuses on low-level constructs,
even when students are expected to gain higher-level problem-
solving and program-design skills. How to Design Programs (HTDP)
is a curriculum that teaches a multi-step approach to program-
design, promoting multiple, interrelated program-design skills. My
research explores how novice programmers use HTDP-based tech-
niques to design programs, the design-related skills students learn
and use, the factors that drive their design decisions, and how these
weave into a conceptual framework of HTDP-based program-design.

KEYWORDS
Program-design; CS1; novice programmers; qualitative research

1 PROGRAM CONTEXT

I am a fourth year PhD candidate in the Computer Science program
at WPI; my program includes learning sciences courses to inform
my research. I have defended my dissertation proposal in the early-
Spring of 2018. My early research explores the planning behavior
of CS1 students. I have built on this work through think-alouds
and interviews with a new cohort of early-CS university students
from which I have developed a SOLO-based framework of program-
design-related skills and narratives of how students use the HTDP
process to design programs. I will begin the next iteration of my
studies in the upcoming school year.

2 CONTEXT AND MOTIVATION
Learning program-design remains a nontrivial goal for novice pro-
grammers in CS1 [2, 5, 12], requiring students to make various
design choices: from lower-level concerns of choosing relevant
programming language constructs to higher-level concerns of iden-
tifying and clustering subtasks into code blocks. Plan-composition
is noted as a major difficulty among novices [12] yet most intro-
ductory programming courses focus heavily on teaching low-level
programming constructs even when students are also expected to
develop higher-level programming and problem-solving strategies,
often through trial-and-error [5].

How to Design Programs [6] is an introductory computing cur-
riculum that teaches a multi-step process of program-design. It

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER ’18, August 13-15, 2018, Espoo, Finland

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5628-2/18/08.

https://doi.org/10.1145/3230977.3231020

has been adopted in higher-education institutions and some K-12
programs, yet the program-design skills it fosters and how students
learn with HTDP remains largely unexplored in CSEd research. My
work explores how novice programmers use the HTDP process to
design programs, looking at the relationships around their use of
program-design-related skills and techniques, and the contributing
factors that drive their programming. Understanding how program-
design-related skills and techniques are used, and the affordances
and limitations around these provides valuable insight for designers
of CS curricula and pedagogy.

3 BACKGROUND & RELATED WORK
More recent investigation into students’ program-design skills have
mostly looked at code outputs of students who are learning in differ-
ent curricula [11] or after interventions that teach design strategies
[5, 10]. These have showed varied results and often focused on
code-level techniques (e.g. merging code). Others captured students’
mastery of specific programming-related skills by assessing student
output using taxonomies of skill progressions [8, 9].

On the other hand, HTDP [6] teaches students to work through
a progression of steps when designing programs. Some of these
steps include writing concrete examples of data, writing test cases
for proposed functions, and writing code skeletons (templates) that
fully traverse the input type. From this perspective, program-design
isn’t just a single strategy of merging relevant code blocks [9] or
the application of recurring patterns [10], but also involves strate-
gies such as using tests to model program behavior or designing
programs based on data types instead of simply selecting language
constructs. This multi-step process promotes the learning and use
of techniques and multiple interrelated skills for program-design.
This research aims to develop a more nuanced understanding of
how students design programs using HTDP-based design techniques
and skills and the factors that drive their design decisions.

4 STATEMENT OF THESIS/PROBLEM

The How to Design Programs curriculum teaches learners program-

design through the development of a set of multiple, interrelated

component skills [3]. We want to develop a conceptual framework
of how novice programmers use HTDP to design programs. Inter-
esting sub-questions include:

(1) What skills do HTDP-trained students display when they use
HTDP to design programs? How might variations in the ways
that students perform these skills look like?

(2) What affordances, difficulties, or limitations of the HTDP process
can be observed from accounts of students’ use of HTDP?

(3) How might differences in programming problem context influ-
ence students’ use of HTDP? (e.g. solving problems for which
students have seen applicable solution-structures vs. no prior
knowledge on applicable solution-structures)


https://doi.org/10.1145/3230977.3231020

(4) What other factors seem to influence students’ (a) use of program-
design-related skills and/or (b) use of HTDP-based design tech-
niques and what relationships among these do we observe?

5 RESEARCH GOALS & METHODS

I approach my research questions with the following methods:

o Conduct interviews and think-alouds with students. I will
conduct studies with students in HTDP-based CS1 courses that in-
volve (1) giving the students programming problems to solve from
scratch while thinking-out loud and (2) interviewing students about
their approaches towards solving programming problems. These
provide opportunities to engage with students and capture students’
narratives about how they’re using HTDP to design programs. The
interviews will focus on the skills students are using (sub-question
1), accounts of their use of HTDP-based techniques (sub-questions
2, 3), and other factors and relationships that may influence their
skill/technique-use and overall design practice (sub-question 4).

o Develop a framework of program-design skills and narra-
tives of students’ use of HtDP. We will code the think-aloud and
interview data to identify relevant program-design skills. To date,
we have developed a SOLO-based [1] framework that details the
skills students use in their program-design practice, as well as the
variations in the way each skill is applied. We will also code for
accounts of how students use the techniques promoted by HTDP,
with a particular focus on their use of the HTDP template design
pattern. On top of these, we will also identify other underlying
factors that may influence students’ use of these program-design
related skills and techniques. These analyses will enable us to gain
an understanding of the skills that HTDP fosters, a sense of how
to measure them, and a sense of the extent to which these skills
and techniques can be applied - the affordances they offer, the
difficulties that arise in their use, and their observed limitations.

e Validate the conceptual frameworks of HtDP-use. Devel-
oping the HTDP-based conceptual framework of novice program-
design raises the subgoal of validating this framework to determine
whether it accurately describes how novices use HTDP to design
programs. We approach this validation in two ways: (1) we will
replicate our studies and analyses across student cohorts from (1 to
2) other institutions that use an HTDP-based CS1 curriculum and (2)
we will have other HTDP-expert instructors replicate our analyses
on a subset of our data. The first approach allows us to generalize
our findings across different HTDP student cohorts and account
for differences in learning contexts (e.g. instructors, programming
problems used in courses, etc.). The second allows us to check
whether our framework captures similar nuances and relationships
observed by other experienced HTDP instructors.

6 DISSERTATION STATUS

I have completed an exploratory study [2] of student programming
behavior as they worked on novel problems. Findings show that
students were unable to adapt their design processes to solve com-
plex problems, tinkering on-the-fly rather than planning ahead. In
a follow-up study [4], where we asked students to both produce
and evaluate multiple structurally different solutions for a set of
programming problems, students raised interesting factors that
drove their design choices in evaluations of their own work. This
led us to expand our work: I conducted think-alouds and interviews

with students at multiple points during the course of their CS1 and
through to CS2 to identify skills and influencing factors in students’
design decisions and explore how these interact with their use of
HTDP-based design techniques. Our analysis of the CS1 data re-
sulted in the development of a SOLO-based framework [3] of the
program-design-related skills and the variations in ways students
perform these skills, as well as the development of narratives of
students’ use of HTDP-based design techniques to solve multi-task
programming problems [7]. Going forward, I will validate and re-
fine this framework by analyzing similar data from HTDP-trained
students in 1 to 2 other institutions, as well as have other HTDP
instructors replicate our analyses on a subset of our data.

7 EXPECTED CONTRIBUTIONS

My dissertation contributes to the development of CS education ped-
agogy. Understanding the meaningful distinctions in the variations
of novices’ skill-performance enables educators to assess instruc-
tional material to concretely identify content that support the devel-
opment of particular design-related skills. Furthermore, understand-
ing these skills and how students use design techniques enables us
to capture the cognitive nuances that support the use of these skills
and techniques. Second, it provides evidence towards the efficacy of
an alternative method for program-design for novices. Understand-
ing the affordances and accounts of how students use the HTDP-
techniques in practice provides evidence towards the effectiveness
and limitations of the techniques. In particular, the template design
pattern in HTDP departs from traditional, implementation-focused
patterns by drawing on data types instead of mappings between
problem types and stereotype-patterns. This provides a useful al-
ternative program-structuring method for novices who may not
have experience or schema for certain problems, but can draw on
data types to retrieve viable schemas.

REFERENCES

[1] J. B. Biggs and K. Collis. 1982. Evaluating the Quality of Learning: the SOLO
taxonomy. Academic Press, New York.

[2] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between
Bottom-Up and Datatype-Driven Program Design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM, 205-210.

[3] Francisco Enrique Vicente Castro and Kathi Fisler. 2017. Designing a Multi-
faceted SOLO Taxonomy to Track Program Design Skills Through an Entire
Course (Koli Calling ’17). ACM, New York, NY, USA, 10-19.

[4] Francisco Enrique Vicente Castro, Shriram Krishnamurthi, and Kathi Fisler. 2017.
The Impact of a Single Lecture on Program Plans in First-year CS (Koli Calling
’17). ACM, New York, NY, USA, 118-122.

[5] Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and Assess-
ing Programming Strategies Explicitly. In Proceedings of the Eleventh Australasian
Conference on Computing Education. Darlinghurst, Australia, Australia.

[6] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[7] Kathi Fisler and Francisco Enrique Vicente Castro. 2017. Sometimes, Rainfall
Accumulates: Talk-Alouds with Novice Functional Programmers (ICER '17). ACM,
New York, NY, USA, 12-20.

[8] David Ginat and Eti Menashe. 2015. SOLO Taxonomy for Assessing Novices’
Algorithmic Design (SIGCSE ’15). ACM, New York, NY, USA, 452-457.

[9] CruzIzu, Amali Weerasinghe, and Cheryl Pope. 2016. A Study of Code Design
Skills in Novice Programmers Using the SOLO Taxonomy (ICER ’16). ACM,
251-259.

[10] Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern- oriented Instruc-
tion and Its Influence on Problem Decomposition and Solution Construction
(ITiCSE 07). ACM, New York, NY, USA, 151-155.

Otto Seppild, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem is? (Koli Calling ’15). ACM,
87-96.

E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms and
Explanations. Commun. ACM 29, 9 (Sept. 1986), 850-858.

—_
o

[12


http://www.htdp.org/

	Abstract
	1 PROGRAM CONTEXT
	2 CONTEXT AND MOTIVATION
	3 BACKGROUND & RELATED WORK
	4 STATEMENT OF THESIS/PROBLEM
	5 RESEARCH GOALS & METHODS
	6 DISSERTATION STATUS
	7 EXPECTED CONTRIBUTIONS
	References

