
Pedagogy and Measurement of Program Planning Skills

Francisco Enrique Vicente G. Castro
Department of Computer Science

Worcester Polytechnic Institute
Worcester, Massachusetts 01609 USA

fgcastro@cs.wpi.edu

ABSTRACT
Students in first-year computing courses deal with program-
ming problems that can be solved through various solutions
that organize the problem’s tasks in different ways. Select-
ing among these organizations of code or program plans and
implementing them depends on various factors such as prior
knowledge of solutions and features of programming lan-
guages used. Additionally, problem solving through effective
program planning continues to be difficult for students; in-
struction in many first-year courses focuses on low-level con-
structs without discussing higher-level plans and students
are left to figure out strategies for problem decomposition
and code composition on their own. My research explores
ways to teach planning strategies effectively so students will
be able to learn to apply these strategies as well as transfer
the use of these strategies across problems.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education.

Keywords
Program design, programming pedagogy, plan composition

1. PROGRAM CONTEXT
I am a full-time doctoral student and research assistant

beginning the third year of my PhD program in Computer
Science at WPI. I have gained candidacy by completing
my research qualifying requirement and PhD breadth re-
quirement in Spring 2016. My program coursework includes
learning science courses to inform my research.

My research qualifier was an exploratory study of plan-
ning behavior of CS1 students; results of this study were
also presented in a conference. I am doing follow-up stud-
ies that explore the effect of planning-focused pedagogical
interventions on how students structure their solutions to
programming problems and exploring how to measure plan-
ning skill acquisition and the transfer of these skills to other
problems. The findings will contribute to the development
of a dissertation proposal in the coming academic year.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICER ’16 September 08-12, 2016, Melbourne, VIC, Australia

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4449-4/16/09.

DOI: http://dx.doi.org/10.1145/2960310.2960344

2. CONTEXT AND MOTIVATION
Students make various choices when developing solutions

for programming problems. These choices range from lower-
level concerns of selecting programming constructs to use
(e.g. choosing between looping constructs) to higher-level
concerns such as how to cluster the subtasks of a problem
into functions or code blocks. The organization and cluster-
ing of subtasks is called a plan [7]. Consequently, program-
ming is a process that involves both the implementation of
plan components using lower-level constructs and the com-
position of these implementations into a solution that meets
the goals of the programming problem.

Arguably, program planning is a useful skill, not only for
students who study computing or intend to work in soft-
ware development, but also for casual programmers who
write code to, say, process data for lab experiments. These
people encounter situations such as noisy data and chang-
ing process requirements that require planning and not just
low-level construct choices. However, the landscape of first-
year programming courses focuses instruction on the use of
low-level programming constructs while expecting students
to develop problem-solving and programming strategies on
their own through extensive trial-and-error [2]. A recent
study I have conducted showed that students struggle with
programming even with the use of scaffolding code when
there is no explicit instruction on program planning [1].

3. BACKGROUND & RELATED WORK
Developing and integrating programming plans has been

identified as a difficult task among programming students
[7]. While more recent studies have shown students succeed
in program planning in specific contexts [4, 6], the pedagogic
choices that help students with this task, as well as the prior
knowledge that students bring with them remain poorly un-
derstood. Students who take their first computing courses
in college vary in terms of programming background – some
will carry some experience from high school while for others,
this is their first exposure to programming.

Alongside the resurgence of planning studies [1, 6] is a
growth in the body of research that addresses the improve-
ment of planning skills through pedagogical frameworks and
curricula that teach problem solving strategies in program-
ming. Muller et al. used the concept of programming pat-
terns, known solutions for recurring design or programming
problems, in developing pattern-oriented instruction [5]. This
approach teaches students to attach labels to algorithmic
patterns and encourages them to look for common patterns
across problems. De Raadt et al. used a ‘strategy guide’

273



that discusses abutment, nesting, and merging for integrat-
ing programming strategies and explicitly required their stu-
dents to apply specific strategies in their solutions [3]. My
research builds on these by focusing on problem-level tech-
niques (e.g. cleaning data) rather than code-level techniques
(e.g. merging code). Additionally, I am exploring students’
discussions on design tradeoffs as a way of surveying what
they understand about patterns and their motivations for
choosing between them.

4. STATEMENT OF THESIS/PROBLEM
My work explores how to make students effective at plan-

ning programs with multiple subtasks. Specifically, I want
to develop (a) techniques for measuring planning and related
skills in students, and (b) techniques for teaching these skills
in ways that improve students’ planning performance.

Based on preliminary findings and lessons learned in my
previous studies, I propose that students who have acquired
sufficient planning skills should be able to do the following:
1. Planning: apply planning in producing programs by de-

composing the problem into relevant tasks, implementing
the tasks in code, and composing the implementations
into an overall program.

2. Assessment: provide a technically accurate assessment
of plans using a vocabulary of planning terminology.

3. Transfer: apply planning to other problems requiring
similar plans but in different contexts.

5. RESEARCH GOALS & METHODS
I will focus on the following concrete goals and methods:
Develop a framework for teaching planning. An in-

tegral part of this is exposing students not only to problems
with multiple subtasks, but also to multiple plans for each
problem. At this stage, I am building a library of problems
that can be used for teaching and assessment and deter-
mining what techniques and principles to teach students for
designing plans.
Measure the acquisition of planning skill. Measur-

ing learning gains requires assessing students’ prior knowl-
edge. I will collect data on students’ programming back-
grounds and ability to write programs for simple problems.
This will provide a baseline of what plans students know be-
fore instruction on planning in a first-year computing course.
To measure acquired planning knowledge, students’ solu-
tions to assessment problems will be analyzed to determine
(a) what plans students use, (b) ability to develop correct
plans for problems, and (c) whether they can develop multi-
ple plans for a problem - this last measure gives insight into
students’ skills in approaching a problem in multiple ways.
Measure planning assessment skill. Programming

problems can be solved through multiple approaches that
each have design tradeoffs. Good planning education en-
ables students to produce multiple plans for each problem
and appreciate tradeoffs between plans. I will collect and
analyze data on issues and principles students raise when
discussing programming solutions before and after instruc-
tion. Doing so allows me to determine whether students gain
richer and more accurate planning vocabulary and whether
being made aware of multiple solutions changes their plans
when solving problems. This also aids in gaining insight into
their problem solving knowledge and processes.
Measure transfer of planning skill. This enables the

assessment of the transfer of learning in planning across
problems. Multiple problems with different contexts but

sharing common plans will be used for assessment to de-
termine whether students are able to recognize similarities
in plan requirements and are able to utilize their planning
knowledge to solve these problems.

6. DISSERTATION STATUS
I have published an exploratory study [1] that looked at

student programming behavior when working on problems
for which they have not seen techniques for solving. Findings
show that even when scaffolding is provided (i.e. template
code for traversing input data), students struggled to de-
velop working solutions. This shows that we clearly need to
figure out richer approaches to teach them about planning.

A follow-up study was done where students from different
universities were given a lecture on planning between as-
signments. Students were given programming problems in
the pre-test and then assigned a new set of problems in the
post-test. Students were also asked to produce two solutions
for the post-test that embody different plans and preference-
rank their solutions to see what criteria they used to evaluate
their plans. We observed some positive impact, but not as
much as we wanted in one course, so studies are continuing.

At this stage, I am in the process of developing (a) follow-
up studies, (b) material for planning instruction, and (c)
methods for measuring student planning performance. I am
also building the literature for my dissertation proposal. The
findings from the studies to be conducted will be used to
inform my proposal which I hope to present at the end of
the coming academic year.

7. EXPECTED CONTRIBUTIONS
The contributions of this work to computing education

include a pedagogical framework for integrating program-
ming instruction with planning instruction and methods of
measuring student performance in planning, planning assess-
ment, and transfer of learning in planning. Findings from
studies conducted provides insights into students’ planning
and programming methodologies and their understanding of
their own knowledge.

8. REFERENCES
[1] F. E. V. Castro and K. Fisler. On the Interplay

Between Bottom-Up and Datatype-Driven Program
Design. In Proceedings of SIGCSE, SIGCSE ’16, pages
205–210, New York, NY, USA, 2016. ACM.

[2] M. de Raadt, M. Toleman, and R. Watson. Training
Strategic Problem Solvers. SIGCSE Bull., 36(2):48–51,
June 2004.

[3] M. de Raadt, R. Watson, and M. Toleman. Teaching
and Assessing Programming Strategies Explicitly. ACE
’09, Darlinghurst, Australia, Australia, 2009.

[4] K. Fisler. The Recurring Rainfall Problem. ICER ’14,
pages 35–42, New York, NY, USA, 2014. ACM.

[5] O. Muller, D. Ginat, and B. Haberman. Pattern-
oriented Instruction and Its Influence on Problem
Decomposition and Solution Construction. ITiCSE ’07,
pages 151–155, New York, NY, USA, 2007. ACM.

[6] O. Seppälä, P. Ihantola, E. Isohanni, J. Sorva, and
A. Vihavainen. Do We Know How Difficult the Rainfall
Problem is? Koli Calling ’15, pages 87–96. ACM, 2015.

[7] E. Soloway. Learning to Program = Learning to
Construct Mechanisms and Explanations. Commun.
ACM, 29(9):850–858, Sept. 1986.

274




