
Investigating Novice Programmers’ Plan Composition
Strategies

Francisco Enrique Vicente G. Castro
Worcester Polytechnic Institute

Department of Computer Science
Worcester, Massachusetts, 01609, USA

fgcastro@wpi.edu

ABSTRACT
Problem solving through effective plan decomposition and
composition continues to be exceedingly difficult for novice
programmers. This is exacerbated by the fact that these
strategies are usually implicit in instruction: students are
left to figure out their own problem solving strategies. My
research investigates ways to elicit and improve students’
plan decomposition and composition strategies.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computers and In-
formation Science Education—Computer Science Education.

Keywords
Novice programmers, problem solving, plan composition

1. PROGRAM CONTEXT
I am beginning the second year of my PhD program in

Computer Science at WPI. I am a full-time PhD student and
research assistant under the supervision of Dr. Kathi Fisler.
I anticipate completing my research qualifying milestone by
Fall 2015 and my PhD breadth requirement by Spring 2016
(to gain candidacy). To inform my research, I have included
learning science courses in my program coursework. I com-
pleted my master’s degree in 2014.

As part of my research qualifier, I have completed an ini-
tial study of plan composition behavior of CS1 students at
WPI. The study and preliminary findings will contribute to
the development of a full dissertation proposal around this
topic in the coming academic year.

2. CONTEXT AND MOTIVATION
A problem being explored in computing education is plan

composition: how students analyze a problem, decompose it
into finite subproblems, and finally weave solutions to these
subproblems into a coherent, working program. Most intro-
ductory courses emphasize using programming concepts in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author(s).
Copyright is held by the owner/author(s).
ICER’15, August 9–13, 2015, Omaha, Nebraska, USA.
ACM 978-1-4503-3630-7/15/08.
http://dx.doi.org/10.1145/2787622.2787735 .

code, usually through extensive sets of exercises [1, 4]. Stu-
dents are then expected to develop general problem solving
strategies, yet they often do not know where or how to start
[8]. They are unable to identify problem components and
relevant algorithmic structures, as well as the interactions
between these components [1, 4, 5, 6].

These difficulties are often not due to students’ lack of un-
derstanding of how to use language constructs. The problem
stems from the fact that problem solving and plan compo-
sition strategies are usually implicit in instruction; students
are left to figure out their own plan composition strategies
[1, 4]. Soloway’s study on the Rainfall problem [8] highlights
the exceeding difficulty students experience in carrying out
plan composition effectively; the problems that underlie plan
composition [9] continue to be evident even now.

3. BACKGROUND & RELATED WORK
Literature highlights that novices not only need to be

taught programming language syntax and semantics, but
also need explicit instruction on design skills, problem solv-
ing, and plan composition [8, 10]. Spohrer and Soloway
identify both novices’ language construct-based difficulties
and an extensive list of problems that make plan compo-
sition complicated for novices [9]. Their findings suggest
that the occurrence of bugs are due to students’ inability to
effectively organize and integrate the goals and plans that
underlie program code, a sentiment echoed by Pirolli et. al.
in their study on learning recursive programming [7]. Both
of these projects assume that people approach new problems
by recalling and modifying solutions to similar problems [7,
10]. These and later projects try to give plans explicit labels
to help students recognize (a) concrete goals of individual
subproblems and (b) patterns across similar problems [6, 8].

How to Design Programs (HTDP) [2] is an introductory
computing curriculum that approaches similarity differently
from the projects discussed previously. HTDP teaches stu-
dents to produce a common code shape based on the struc-
ture of the input data, then to use examples to tailor the
common shape to a specific problem. Fisler [3] investi-
gated plan composition behavior in HTDP students. These
students made fewer errors than in earlier Rainfall studies,
but several still struggled with plan composition. My work
will explore how the combination of HTDP’s data-driven
methodology and others’ labeling oriented approaches might
be used together to improve students’ plan composition skills.

249



4. STATEMENT OF THESIS/PROBLEM
The context and and related work informs and guides my

research question: When and how do students’ task decom-
position and code composition instances emerge in their pro-
gramming process and how can we influence them to do it
better? Interesting sub-questions include:

1. Do students: a) decompose a problem into smaller plans,
implement the individual tasks, and then recompose; b) im-
plement a task-related piece of code and then patch around
it; or c) pull out related code (possibly from prior work
done), modify the code to adapt to the problem context,
and then build around it?

2. What role can design-based approaches like HTDP play
in how students implement task decomposition and code
composition strategies?

5. RESEARCH GOALS & METHODS
Methods I expect to use include:
Elicit students’ problem solving strategies. We’re

interested both in the code students produce and more talk-
aloud style data. Students’ programming activity will be
video captured for analysis. I will analyze these for instances
of plan decomposition, recomposition, and other relevant
problem-solving behavior. I will also use a combination of
surveys or other free-form input to understand how students
are approaching these problems. My initial study used a
combination of these methods.

Elicit program design principles students use in
plan composition. How students think about composition
can be reflected both in the code they write and on how they
comprehend solutions others have written. Data on a com-
bination of problems on writing code and comprehending
code will be collected from several educational institutions
to understand students’ perceptions of composition.

Investigate the role of cognitive factors in plan
composition strategies. Because learning programming
imposes cognitive load upon the learner, further review of
literature will be done to consider how cognitive factors play
a role in problem solving.

6. DISSERTATION STATUS
For my research qualifier, I have completed an exploratory

study of the edits students made while working on a plan
composition problem. We video captured the programming
activity of CS1 students at WPI. Preliminary results suggest
that while students’ programming is informed by HTDP and
students recognize the need for plan decomposition, they
struggle with the process of how to decompose the problem
into coherent plans and eventually recompose solutions. In
the cohort that was analyzed, plan decomposition was very
minimal, tests were used to confirm code outputs instead of
informing the design of solutions, and recomposition could
not be effectively carried out due to the ineffective ways with
which plans were developed in the first place. The study
involved the development of a coding scheme which will be
modified as the research progresses.

From the doctoral consortium, I hope to gain insight from
commentaries of my research topic and the initial study I
have conducted, as well as suggestions to methodology and
additional ideas and perspectives of the subject matter that

I may have not examined so far. Likewise, feedback may
help refine my research questions. Findings from future data
analyses using new data to be collected from other institu-
tions will be used for the dissertation proposal which I hope
to submit and defend within the year.

7. EXPECTED CONTRIBUTIONS
The contributions of this work to the computing education

community include the identification of students’ plan de-
composition and composition methodologies and techniques
that might influence these methodologies. The findings from
this research may further inform the development of future
computing education curricula and pedagogy.

8. REFERENCES
[1] M. de Raadt, M. Toleman, and R. Watson. Training

Strategic Problem Solvers. SIGCSE Bull., 36(2):48–51,
June 2004.

[2] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs: An
Introduction to Programming and Computing. The
MIT Press, Cambridge, Mass, Feb. 2001.

[3] K. Fisler. The Recurring Rainfall Problem. In
Proceedings of the Tenth Annual Conference on
International Computing Education Research, ICER
’14, pages 35–42, New York, NY, USA, 2014. ACM.

[4] A. Keen and K. Mammen. Program Decomposition
and Complexity in CS1. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 48–53, New York, NY,
USA, 2015. ACM.

[5] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. S.
Clair, and L. Thomas. A Cognitive Approach to
Identifying Measurable Milestones for Programming
Skill Acquisition. In Working Group Reports on
ITiCSE on Innovation and Technology in Computer
Science Education, ITiCSE-WGR ’06, pages 182–194,
New York, NY, USA, 2006. ACM.

[6] O. Muller, D. Ginat, and B. Haberman.
Pattern-oriented Instruction and Its Influence on
Problem Decomposition and Solution Construction. In
Proceedings of the 12th Annual SIGCSE Conference
on Innovation and Technology in Computer Science
Education, ITiCSE ’07, pages 151–155, New York,
NY, USA, 2007. ACM.

[7] P. L. Pirolli, J. R. Anderson, and R. G. Farrell.
Learning to program recursion. In Proceedings of the
Sixth Annual Cognitive Science Meetings, pages
277–280, 1984.

[8] E. Soloway. Learning to Program = Learning to
Construct Mechanisms and Explanations. Commun.
ACM, 29(9):850–858, Sept. 1986.

[9] J. C. Spohrer and E. Soloway. Novice Mistakes: Are
the Folk Wisdoms Correct? Communications of the
ACM, 29(7):624–632, July 1986.

[10] J. C. Spohrer and E. Soloway. Simulating Student
Programmers. In Proceedings of the 11th International
Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’89, pages 543–549, San Francisco, CA, USA,
1989. Morgan Kaufmann Publishers Inc.

250




