
On the Interplay Between Bottom-Up and 
Datatype-Driven Program Design

Francisco Castro, fgcastro@wpi.edu
Advisor: Kathi Fisler, kfisler@wpi.edu
Department of Computer Science

Abstract

When students are faced with a programming problem unlike 
any they have solved before, prior research suggests that they 
develop code backwards from essential computations in the 
problem. Some curricula, however, teach students to first write 
scaffolding code based on the type of the input data. How do 
these two approaches interact? We gave CS1 students who 
were taught to write scaffolding code a programming problem 
unlike any they had seen before. We found that while students 
put essential computations into the scaffolds, they often 
overuse affordances of the scaffolds in ways that lead to plan-
composition errors. We propose that steering students away 
from on-the-fly decomposition while programming could help 
avoid some of these errors.

Program DesignModels of Novice Programmer Behavior

Know similar 
solution 
pattern? Plan Creation

Novice creates a new plan starting from a code fragment for 
a sub-computation (focus/focal computation) and expands 
the code around the focus bottom-up to implement a solution.

Plan Retrieval
Novice retrieves the known solution and implements top-
down, with limited adaption to the new problem.

Y

N

 Novices rely heavily on previously learned program plans, examples, or 
solutions, fitting learned solutions into the context of new problems [2,4]

 The focal expansion model identifies the states of (1) plan retrieval and 
(2) plan creation to describe novice programmer behavior when 
encountering a programming problem [3]

References
[1] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to Design Programs. MIT Press, 2001.
[2] P. L. Pirolli and J. R. Anderson. The role of learning from examples in the acquisition of recursive 

programming skills. Canadian Journal of Psychology, 39(2):240–272, 1985.
[3] R. S. Rist. Knowledge creation and retrieval in program design: A comparison of novice and 

intermediate student programmers. Hum.-Comput. Interact., 6(1):1–46, Mar 1991.
[4] J. C. Spohrer and E. Soloway. Novice mistakes: Are the folk wisdoms correct? Commun. ACM, 

29(7):624–632, July 1986. 

We thank Joe Beck for letting us collect data in his course and Mike Clancy for pointing us to the Adding 
Machine problem. This research is partially funded by the US NSF under grant number CCF1116539.

Acknowledgments

Methodology

Problem: 
Determine if a list of 
numbers contains 7

Results

Key Takeaways
Research Questions
1. When do HTDP-trained students use templates?
2. How do focal computations manifest in HTDP 

programs?
3. How and when do HTDP students integrate focal 

computations into existing code?

Problem: Adding Machine
Design a program called adding-machine
that consumes a list of numbers and produces 
a list of the sums of each non-empty sublist
separated by zeros. Ignore input elements that 
occur after the occurrence of two consecutive 
zeros.

build output list

Data Collection
 Spring 2015 CS1 course using HTDP in Racket
 Participants worked on the Adding Machine problem 

during a weekly lab session
 Video captured activity within the IDE window
 25 (of 138) submissions analyzed

Data Coding

identify sublists

sum

ignore

Datatype-Driven

Focal Expansion

for each num in input_list:

if num == 7:

return True

return False

How to Design Programs 
(HTDP) Core Idea:

Design programs from the 
structure of the input data

Retrieval

Creation

build list

single zero

sum

build list

single zero

Output: 
number

double zero

sum

Output: 
number

helper 
function

Output: 
number

Output: 
list

Output: 
list

sum

build list

double zero

single zero

Findings
 Evidence of HTDP template use, development of focals, and 

task decomposition
 Students created helpers but failed to use them to effectively 

decompose the problem, attempting various task combinations 
and replicating tasks within and across functions

 Students struggled with problem decomposition and plan 
composition, resulting in output inconsistencies and errors

Future Work
 Develop pedagogical interventions that 

teach principles of problem decomposition 
and plan composition

 Use concrete examples to work out problem 
decompositions

 Teach data-centric principles for 
programming – i.e. data transformation to 
make subsequent computations easier; 
plan dependencies to work out plan 
composition

 Data suggests that students largely work through problem tasks
 Students retrieved plans in the form of (a) operational expressions and 

(b) entire functions
 Key issues: on-the-fly problem decomposition around existing code and 

the retrieval of contexts that aren’t well suited to the problem
 Students struggled to decompose the problem and compose plans – they 

were not taught a systematic process for doing these


	Slide Number 1

