
Francisco Castro

fgcastro@cs.wpi.edu

HtDP teaches a multi-step process called the design recipe. The curriculum is used in 

several higher education institutions and some K-12 programs.

1: Data 

Definition

2: Examples 

of Data

3: Contract 

and Purpose

4: Examples / 

Test Cases

5: Datatype 

Template

6: Function 

Details

; A list-of-string is
; - empty or
; - (cons string list-of-string)

(define names (cons “jesse" (cons “barry" empty)))
(define one-name (cons "jay" empty))

; find-name : list-of-string string -> boolean
; Produces true if the given string appears
; in a given list, false otherwise

(check-expect (find-name empty "barry") false)
(check-expect (find-name names "barry") true)
(check-expect (find-name names "wally") false)

; List Template
#|
(define (list-function list-input)
(cond [(empty? list-input) ... ]

[(cons? list-input) ... (first list-input)
... (list-function (rest list-input)) ... ]))

|#

(define (find-name names-list name)
(cond [(empty? names-list) false]

[(cons? names-list) (cond [(string=? (first names-list) name) true]
[else (find-name (rest names-list))])]))

Think about the problem 

space: input/output 

space, boundary cases

Does the code structure 

match the data?

Think about the shape of 

the data

Advisor: Kathi Fisler

kfisler@cs.brown.edu

Dissertation Goal
Develop a conceptual framework of how novice 

programmers use HtDP to design programs.

Does not know how to write tests; misses 

the input/output structure of tests

Able to write tests; descriptions of tests do 

not explain the purpose of the test(s); does 

not express the idea of varying test 

scenarios

Able to write multiple tests; articulates the 

purpose of individual tests but does not 

articulate any relationship between or 

collective purpose for the tests

Able to write tests; identifies a collective 

purpose for the tests, i.e. boundaries, edge 

cases, test space coverage, but limited 

within the context of the problem

Does not know how to define a function

Able to define functions in a simple context 

– uses primitive operations on primitive 

types in a function body

Able to define functions whose bodies 

contain nested non-primitive expressions or 

function calls, but does not articulate the 

semantics of how the results of calling a 

function return to the calling context

Able to define functions whose bodies 

contain nested non-primitive expressions or 

function calls and is able to articulate the 

semantics of how the results of calling a 

function return to the calling context

Does not identify relevant tasks for a 

problem

Able to identify relevant tasks but no 

reflections of separate tasks when talking 

about the code

Able to identify relevant tasks; articulates 

the delegation of tasks into separate 

functions but fails to articulate how to 

effectively compose the tasks in a way that 

solves the problem

Able to identify relevant tasks; articulates 

the delegation of tasks into separate 

functions and can articulate how to 

effectively compose the tasks in a way that 

solves the problem

Just dives in and writes code; uses only a 

single representation

Blindly follows the design recipe; sees each 

function representation as independent of 

others

Articulates a sense of the function 

representations talking about or referring to 

the same computation

Articulates a mechanism through which 

function representations are related, e.g. 

template uses types to drive the code 

structure, execution of a program connects 

to a test space, etc.

Methodical choice of tests and 

examples

Decomposing tasks and 

composing solutions

Leverage multiple 

representations of functions

Composing expressions within 

function bodies

Prestructural Unistructural Multistructural Relational
Multi-strand Skill 

Framework

To this end, we have developed a SOLO-based framework that details the skills that 

students from a single HtDP course use, as well as the variations in the way 

students applied each skill.

•

•

•

•

•

– we coded for these skills and skill-level variations from think-aloud and interview 

data collected from students as they designed solutions for programming problems.

Validating a SOLO framework on 

HtDP-based Program-Design

How to Design Programs

Current questions

Hypothesis

Method 1: Validation with instructors

HtDP instructors will rate students on the skills identified in the framework, 

based on students’ think-aloud/interview transcripts and code solutions.

1. Instructors will be given categories of skills on which to rate students, but 

not the breakdown into levels (prestructural, etc.) – they will rate 

students’ demonstration of the skills on a numeric scale (e.g. 0 – 4) and 

explain their ratings. 

2. Instructors will also report skills/factors they think weren’t covered in the 

set of skills provided.

3. Our analysis of the data will check for the following:

a. If the instructors’ explanations of their ratings correlate with the skill 

levels of the framework

b. If the set of skills in the framework is consistent with what instructors 

expect students to demonstrate or what they grade students on

Method 2: Validation with new student cohorts

1. We will replicate our previous study on HtDP-based CS1 student cohorts 

from 1-2 other schools – students will design solutions to programming 

problems as they think aloud. 

2. We will code for the skills displayed by these students and contrast them 

to those from our original dataset. We will also code for the levels within 

the skills to check if the same levels arise in students’ demonstration of 

the skills.

This work is supported by US National Science Foundation grant no.s 1116539 and 1500039. Acknowledgments


