
Towards a Theory of
Program-Design Learning

Through HtDP

Francisco Castro
Advisor: Kathi Fisler

1

Problems in intro-CS are well-documented: high attrition, inadequate programming proficiency,
dismal performance in assessments

● Affective factors: pervading “CS is hard” notion, lack of interest/motivation
● Socio-cultural, socio-economic factors
● Language-centric curricula, absence of explicit instruction of program-design techniques and

strategies
● Students unable to decompose problems into subproblems and recompose pieces into

solutions

How are students doing in intro-program-design?

2

- Mark Guzdial (BLOG@CACM: Learning Computer Science is Different than Learning Other STEM Disciplines, Jan. 5, 2018)

Classic example of CSEd problem that students struggle to solve: The Rainfall Problem

The Rainfall problem

3

Design a program called rainfall that consumes a list of numbers
representing daily rainfall readings. The list may contain the number
-999 indicating the end of the data of interest. Produce the average
of the non-negative values in the list up to the first -999 (if it shows up).
There may be negative numbers other than -999 in the list
representing faulty readings. If you cannot compute the average for
whatever reason, return -1.

(Multiple) Tasks (!)
● Truncate at -999
● Skip negative values
● Average non-negative values

○ Sum non-negatives
○ Count non-negatives
○ Divide sum by count

● Guard from zero division

Research has shown Rainfall is hard for intro-level students

Some ongoing research: how to incorporate design strategies/patterns in early-CS curricula so students
come out of early-CS courses able to solve such multi-task problems

Our flavor for program-design instruction: the HtDP project

● Systematizes program-design through a step-by-step design recipe (more later)
● Used in a number of universities/colleges, high schools[1, 2], K-12 programs[3]

● Reported success at the college level --- students show good programming
habits and more likely to receive higher grades (than students in other
curriculum)[2]

However: No attention to cognitive underpinnings of how HtDP works;
limited formal evaluation of how students work with HtDP

General question: How do students use the HtDP process to design programs?

How to Design Programs (HtDP)

4[1] Felleisen et al. 2004. The TeachScheme! Project: Computing and Programming for Every Student, [2] Felleisen et al. 2004. The Structure and Interpretation of the
Computer Science Curriculum, [3] Schanzer et al. 2015. Transferring Skills at Solving Word Problems from Computing to Algebra Through Bootstrap

We looked at existing models of program-design

Rist’s model: worked on the idea of schema (a mental organization of knowledge) retrieval
Rist developed this model from observing novices program imperatively in Pascal

sum = 0
for each num in input_list:

if num >= 0:
sum = sum + num

return sum

● Retrievable schema: top-down,
straightforward development of
solution after retrieving from memory
(“retrieval state”)

● No retrievable schema: bottom-up
development from an identifiable
computation
(“creation state”)

Retrieval Creation

We weren’t sure how HtDP fit this model….

5

What is How to Design Programs (HtDP)?

; A list-of-number is
; - empty or
; - (cons number list-of-number)

(define even-nums (cons 2 (cons 4 (cons 6 empty))))

; sum-nums : list-of-numbers -> number
; Produces the sum of all numbers in the list

(check-expect (sum-nums even-nums) 12)

; List Template
; (define (list-fxn list-input)
; (cond [(empty? list-input) ...]
; [(cons? list-input) ... (first list-input)
; (list-fxn (rest list-input)) ...]))

(define (sum-nums nums-list)
 (cond [(empty? nums-list) 0]
 [(cons? nums-list) (+ (first nums-list)
 (sum-nums (rest nums-list)))]))

Describe the shape
of input

Describe the
function behavior

Function examples

Function template
based on input

type

Function details

Example:
Write a function
to sum a list of
numbers

Design recipe

*Note: Semicolon (;) used for comments 6

Rist model and HtDP??

We weren’t sure that HtDP fit Rist’s model…. sum = 0
for each num in input_list:

if num >= 0:
sum = sum + num

return sum

1. Don’t start with a program --- start
with steps that illuminate more
information about the problem

2. Don’t start with a computation ---
design recipe gives you a pattern to
start with, the template, based on the
input type in the problem

Retrieval Creation

What is the interaction between this programming
model and the HtDP process?

7

Exploring interplay of HtDP with Rist’s model: Adding-machine study

What did we do?

● We gave HtDP-trained CS1 students the Adding
Machine programming problem and
video-recorded the IDE window as they worked
on the problem

● We open-coded a sample of the submissions to
identify how students were using HtDP to solve
the problem

Design a program called adding-machine that
consumes a list of numbers and produces a list of
the sums of each non-empty sublist separated by
zeros. Ignore input elements that occur after the
first occurrence of two consecutive zeros.

8

** familiar data-type, but needs more advanced
concepts: e.g. parameter that accumulate data,
reshape the data, etc.

What did we find out?

1. After writing a template for the Adding Machine
function, students wrote expressions that took on
specific tasks within the template

● Tasks students wrote expressions for: sum,
single-zero, double-zero

● However, unclear when students were in a
“creation” state ---
e.g. summing is standard HtDP problem,
terminating at single- and double-zero
patterns resembled base case tasks (which
usually treated only the empty list)

2. Some students did not decompose the problem
and erroneously combined multiple tasks in a
single template instance

e.g. sum and double-zero tasks in one function:
return zero to terminate sum, return a list to
terminate double-zero (output inconsistency)

● Students seem to not have learned when to
decompose problems into multiple template
instances...

● … Or may lack understanding that one
template only returned one output type

9

What did we find out? (2)

3. Some students who tried to decompose the problem using helpers failed to compose solutions due to
a verbatim use of the template

→ Call helper that summed values of a sublist; BUT, recursive call still took the rest of the entire
input list instead of just the suffix without the sublist

→ Seemed to be a verbatim use of the template without a clear understanding of what parts of
the data still need to be processed in the recursive calls

10

Adding-machine study data was from a single point of the
course --- observations at that particular point of learning

We wanted to understand further how students’ use of HtDP
evolved across a CS1 course

General question:
Do we see an evolution of how students are using HtDP to
solve programming problems?

Next step?

11

Exploring evolution of students’ HtDP use: Multi-session study

What did we do?

● We interviewed students about how they
used HtDP to solve homework problems
(3 sessions)

● In the last session, we did a think-aloud +
post-interview session. Students solved the
Rainfall problem while articulating their
thought-process

● We open-coded a subset of the transcripts
to figure out how students used HtDP to
solve programming problems

12

Session
1

Activity Interview* on homework problem

Topic
List of tuples/structures
(sum cost of ads for a political
candidate)

Session
2

Activity Interview* on homework problem

Topic
n-ary trees
(check oxygen levels in a river
system)

Session
3

Activity Think-aloud and post-interview*

Topic
Rainfall
(average non-negative numbers from
a list until sentinel)

*Interview questions asked students to describe how they approached
problems and their use of the design recipe

What did we find out?

1. We identified concrete skills that students
demonstrated while using HtDP

13

Pre-structural No understanding

Uni-structural Understand a single aspect

Multi-structural Understand several aspects
independently

Relational Inter-operation of several
aspects

Extended
Abstract Generalize to a new domain

Structure of Observed Learning Outcomes (SOLO) captures
different levels of complexity:

2. We also saw that students’ performance in these skills
varied; the variation resembled SOLO-like levels

Student comments
from transcripts

Sort to themes
(skills)

3. After mapping students’ comments to skills we identified, we mapped the
comments to SOLO levels, resulting in a multi-dimension framework that
captures (1) the skills observed and (2) the variations of students’ performance
for each skill

14

Student comments from
transcripts

Sort to themes (skills)

Prestructural

Unistructural

Multistructural

Relational

Observed variation of
students’ performance
in skills

Map to SOLO levels

15

The resulting framework

Syntactic

Semantic
The relational level establishes
logical connections between
schema/artifacts from prior levels

Initial validation of the framework

16

We applied the framework to all transcripts (3 sessions x 13 students) and categorized student
data even beyond the sample

● Students show performing at different levels for
different skills at a given time

✓ Multidimensional taxonomy captures variances
in students performance in different skills

student5

S # Tests Fxns Decmp FxnRep

1 R M U U

2 R R R U

3 R R R M

student1

S # Tests Fxns Decmp FxnRep

1 U M U U

2 R R M U

3 U M M U

● Some students show non-monotonic progression of skills
through the sessions

○ Skills may not have been internalized well
○ Problems may push students towards particular levels
○ Drops may reflect the problem complexity at which

students can apply skills

Like the Adding-machine study, the think-aloud data we collected allowed us to
reconstruct how students were using HtDP to solve a programming problem, and
also captured students’ thought processes

17

Exploring students’ use of HtDP: Rainfall think-aloud study

What did we do?

● We developed narratives of how students solved the Rainfall
problem from the think-aloud and post-interview data

What did we find out?

18

1. Students who simply copied the template
struggled more with changing their solution
structure later on than those who wrote the
template “as they went”

2. Students who only had a syntactic-level
understanding of the accumulator pattern
(using parameters to accumulate a running
value), struggled to adapt it to the needs of
the problem

Common observation from this study and the
Adding-machine study:
Students who exhibit a mostly syntactic-level
understanding of using HtDP templates (and its
variations) struggled to solve multi-task problems.StudA: “I guess [the hardest part] was trying to figure out

how to work in the -1 with the accumulator there because
I didn’t know where to put it [...] all the examples we put
the accumulator after empty [...] but in this one the answer
wasn’t stored in the accumulator.”

3. Students who made connections between
parts of their code (e.g. parameters, functions)
to specific tasks they identified were able to
produce more correct code

19

2 primary outputs from completed studies:

1. SOLO-based framework that formalizes skills around students’ use of HtDP
and the variations of student performance of each skill

2. Narrative accounts and descriptions of students’ use of HtDP to solve
programming problems, with a particular focus on template use

Back to the original question:
How do students use HtDP to design programs?

Based on these studies, we have distilled this bigger question into two research
questions that we have partially addressed through the studies so far ---

RQ1. How do students’ skills around the use of
HtDP design steps evolve through a course?

1.1. What skills do learners exhibit in their use of
HtDP?

1.2. How do students’ performance in the skills
evolve through CS1?

1.3. In what ways do the skills interact with each
other? Which skills, if any, seem to develop earlier
than others?

RQ2. How do students adapt their use of HtDP
templates to problems with multiple task
components?

2.1. How do students perceive templates and their
role in program design? Do they see templates as a
traversal schema, a container schema, or
something else?

2.2. When dealing with a multi-task problem, do
they recognize when a naive use of the template
will not suffice? How do they address this --- do
they allocate tasks to multiple template instances,
mutate the template, force the naive use of the
template, or something else?

20

21

RQ1.
Identify skills
around HtDP
use and
evolution of
students’
performance

RQ2.
Describe

accounts of
HtDP use

(template)

Goal: Understand how students use the HtDP process to design programs

Test Fxns Dcmp Fxn
Reps

Pre

Uni

Multi

Rel

Does the framework capture similar
nuances as HtDP experts when used
to assess skill levels?

Can the skills framework be used as a
predictor of how students might use
HtDP to design programs?

Do we see the same skill-profiles (later)/HtDP-use patterns among
students from other HtDP institutions/on other multi-task problems?

22

Goal: Check whether our skills framework captures similar nuances to those raised by experienced HtDP
instructors

Proposed study: Expert validation of SOLO skills framework

What do we plan to do?

● Give HtDP instructors: [1] student data (transcripts +
code) and [2] likert-scale survey to assess students’
design skills based on student data

● Check:
(1) How similar are the SOLO-based ratings with
instructors’ ratings of skills?
(2) Do the descriptions of skill levels in the framework
capture nuances in instructors’ rating explanations?

This will help us determine how well our SOLO skills framework can be used as
an instrument for assessing students’ program-design skill levels

23

Goal: Determine utility of the SOLO skills framework as a predictor of how students might use HtDP to
design programs

Proposed study: Explore interactions between SOLO skill profiles and HtDP-use
patterns

What do we plan to do?

● Conduct think-aloud/interview-style sessions with
new student cohort and problem

● Use the SOLO skills framework to assess students’
skill levels; develop narratives to describe accounts
of HtDP use

Can the skills framework be used as a predictor of how
students might use HtDP to design programs?

studentX

Tests Fxns Decmp FxnRep

R R M U

Do students with similar skill profiles exhibit similar
errors? Which kinds of errors (e.g. programming,
logic errors, HtDP use errors, etc)?

Do students with similar skill profiles structure
solutions similarly? Use templates similarly?

*Skill profile: “snapshot” of students’
SOLO levels across different skills

24

Goal: Test our analyses in other HtDP-trained cohorts to further validate findings

Proposed stud(y/ies): Replicate studies on HtDP cohorts from other institutions

What do we plan to do?

● Replicate data collection protocol from the Multi-session study

● Use the SOLO skills framework to assess students’ skills; develop narratives to describe accounts of
HtDP use

25

Piecing everything together: Understand how students use the HtDP process to design programs

Overall outcome: A better understanding of the skills that students develop and apply after
studying through HtDP.

RQ1: How do skills evolve?
-- Identify the skills
-- Figure out the performance levels within the skills
** Make sure they aren't problem-dependent [TODO]
** Make sure the skills and levels are meaningful from an
instructor’s perspective [TODO]
** Explore how the different skills co-evolve during a
course [TODO]

Outcome: An understanding of skills that HtDP
fosters, a sense of how to measure them, and a sense
of the extent to which they are problem dependent

RQ2: How to adapt use of HtDP to multi-task
problems?
** Observe use of skills on various multi-task problems
[TODO]
** Explore whether skills differ across different kinds of
multi-task problems or student preparation to solve
them [TODO]

Outcome: Data that HtDP instructors can use to select
pedagogy and assessment towards different kinds of
multi-task problems

