
Development of a Data-Grounded Theory 
of Program Design in HTDP

1

(What we learned from about ~180 hours of watching and 
listening to students as they program)

Francisco Castro

Advisor: Kathi Fisler, PhD

How to Design Programs



How to 
explicitly 

teach program 
design 

strategies?

2

Computing Education Research (CER) Areas
De Raadt ac.

Muller ac.

+ 9-item guideline for constructing 
problems that use the patterns

Ko ac.

Tools

What tools to 
design to aid 

learning?

Sociocultural 
aspects

What culture 
and practices 

exist?

Language 
design

How to design 
languages for 

learners?

Assessments

How to 
measure 
learning?

Diversity

How to make 
communities 

open?

Accessibility

How to remove 
barriers to 

entry?

Debugging

How to teach 
how to fix 

errors?

Plagiarism

How to mitigate 
cheating?

Activities

How to design 
activities to 

teach 
programming 

concepts?Teacher 
training

How best to 
support CS 
teachers?

My dissertation



3

STEP 1: DESCRIBE THE SHAPE OF THE INPUT

   A list-of-number is
   - empty, or
   - (cons number list-of-number)

STEP 2: WRITE EXAMPLES OF THE INPUT

   (define even-nums (list 4  2  6))
   (define odd-nums  (list 5  1  27))
   (define one-num   (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

   sum-nums : list-of-numbers -> number
   Produces the sum of numbers in the list

STEP 4: ILLUSTRATE THE FUNCTION’S PURPOSE W/ INPUT-OUTPUT EXAMPLES

   (check-expect (sum-nums even-nums) 12)
   (check-expect (sum-nums odd-nums) 33)

STEP 5: WRITE A FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STEP 1)

   (define (fxn-name list-input)
      (cond [(empty? list-input) ... ]
            [(cons? list-input) ... (first list-input)
                              (fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

   (define (sum-nums nums-list)
     (cond [(empty? nums-list) 0 ]
           [(cons? nums-list) (+ (first nums-list)
                                 (sum-nums (rest nums-list)))]))

STEP 7: TEST AND REFINE

Early HTDP work 

● Felleisen ac.
Introduced HTDP and accompanying tools

● Bienusa ac., Crestani ac., Sperber ac.
Germany: Experience reports of designing a CS1 curriculum

● Fisler, Fisler ac.
High-level solution structures, errors that HTDP students 
produced

● Ren ac.
HTDP for categorizing students’ office hours questions

● Wrenn ac.
Tool for providing feedback on examples written (pretty cool)

How to Design Programs (HTDP) teaches an explicit design process, 
but has not been studied in terms of how students use it in situ
● How do students allocate tasks? (traversals/accums/etc)
● Need to study how students use design recipe to identify how to 

teach it in a way that’s helpful to students

THE DESIGN 
RECIPE



4

STEP 1: DESCRIBE THE SHAPE OF THE INPUT

   A list-of-number is
   - empty, or
   - (cons number list-of-number)

STEP 2: WRITE EXAMPLES OF THE INPUT

   (define even-nums (list 4  2  6))
   (define odd-nums  (list 5  1  27))
   (define one-num   (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

   sum-nums : list-of-numbers -> number
   Produces the sum of numbers in the list

STEP 4: ILLUSTRATE THE FUNCTION’S PURPOSE W/ INPUT-OUTPUT EXAMPLES

   (check-expect (sum-nums even-nums) 12)
   (check-expect (sum-nums odd-nums) 33)

STEP 5: WRITE A FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STEP 1)

   (define (fxn-name list-input)
      (cond [(empty? list-input) ... ]
            [(cons? list-input) ... (first list-input)
                              (fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

   (define (sum-nums nums-list)
     (cond [(empty? nums-list) 0 ]
           [(cons? nums-list) (+ (first nums-list)
                                 (sum-nums (rest nums-list)))]))

STEP 7: TEST AND REFINE

How do HTDP-trained students use the design recipe to solve 
multi-task programming problems?

DRQ1.     What program design skills do HTDP-trained 
students exhibit when developing solutions for 
multi-task programming problems?

DRQ2.     What interactions do we observe between students’ 
program design skills and how do these contribute 
to their development of solutions for multi-task 
programming problems?

DRQ3.     How do HTDP-trained students’ use of program 
design skills evolve during a CS1-level course?

DRQ4.     How do HTDP-trained students approach multi-task 
programming problems with novel components?

How to Design Programs (HTDP) teaches an explicit design process, 
but has not been studied in terms of how students use it in situ
● How do students allocate tasks? (traversals/accums/etc)
● Need to study how students use design recipe to identify how to 

teach it in a way that’s helpful to students

THE DESIGN 
RECIPE



Research Question Data

DRQ1.  What program design skills do HTDP-trained 
students exhibit when developing solutions for 
multi-task programming problems?

● Video captures of programming sessions while solving 
multi-task problems

● Interview, think-aloud, code submissions, scratch work, field 
observations

DRQ2.  What interactions do we observe between students’ 
program design skills and how do these contribute to 
their development of solutions for multi-task 
programming problems?

● Interview, think-aloud, code submissions, scratch work, field 
observations

DRQ3.  How do HTDP-trained students’ use of program 
design skills evolve during a CS1-level course?

● Interview, think-aloud, code submissions, scratch work, field 
observations from multiple points within a CS1 course

DRQ4.  How do HTDP-trained students approach multi-task 
programming problems with novel components?

● Video captures of programming sessions while solving 
multi-task problems

● Interview, think-aloud, code submissions, scratch work, field 
observations on two problems of varying degrees of novelty

5

Dissertation Research Overview



6

Overall Takeaways — What we learned

1. Students engage in their program design process 
either mechanically or by relating how parts of 
their process contribute to their overall solution

Mechanical

Relational

2. How HTDP students move between task- and 
code-level thinking indicate their success in 
designing solutions

3. Problem decomposition is a critical program 
design skill and needs to be explicitly made a 
part of the design process

Get non-negatives, 
then sum and count

Use a ‘for’ loop 
and ‘if’ . . .

4. Students may benefit from instructional activities and 
problems explicitly aimed at moving them beyond a 
mechanical use of their program design skills

5. Studying how students use the design skills put forth 
by a curriculum must consider both the curriculum 
and instructional activities used to teach the 
curriculum

6. Assessing students’ program design skills needs to 
consider both the level and consistency at which 
they are applying them

7. Developing a data-grounded theory for HTDP 
provides a language for explaining what students 
do, why they do them, and how these affect their 
design work



7

Timeline of Studies

2015

Study 1: Exploring how HTDP 
students design for new problems

[ 1  2  0  7  0  5  4  0  0  6 ]

[ 3  7  9 ]

● Video-captured IDE activity
● Retrospective survey (how started, 

use of DR, got stuck, notes)

Students worked on Adding- 
Machine during a weekly lab

2016

Study 2: Exploring students’ design 
work throughout a CS1 course

Longitudinal study — conducted studies 
with students at multiple points during CS1

● Interview sessions on homework 
problems + solution comparison

● Think-aloud session on Rainfall problem

[ 2  -5  0  -3  4  -999  20  6 ]      2

2017

Coding through a Grounded Theory 
analysis of qualitative data

Study 3: Validating the SOLO skills 
framework with HTDP instructors

Recruited HTDP instructors from 
different institutions
● Assessed students based on the skills 

identified in the skills taxonomy
● Explain ratings
● Describe other factors they looked for 

when assessing students

Thematic coding of instructor responses

Preliminary observations of 
students’ design processes

Data wasn’t rich enough

Framework of program 
design skills

Need to validate the 
framework with other 
HTDP experts

[Castro and Fisler, 2016] [Castro and Fisler, 2017]



8

Timeline of Studies

2017

Study 4: Exploring how students 
navigate schemas to design solutions

2018

Study 5: Multi-university study exploring how students move 
between task-level and code-level thinking on multi-task problems

Sessions: Think-aloud + retrospective interviews on multi-task problems

● Rainfall

Developed design process narratives 
from think-aloud data

● Discussions of solution structure
● Discussions of problem tasks
● Reasoning around edits
● Selection of schemas

● Max-Temps
[ 2  -5  0  -3  4  -999  20  6 ]      2

[ 40  42  d  50  d  52  56  53 ]

[ 42  50  56 ]

● Grounded theory-based analysis of 
think-alouds, field observations, code

● Developed design process narratives

2019

Deeper analysis of Study 2 data

Explore findings on students 
from a different university

Use our skills framework as 
analytical lens for new data

[Fisler and Castro, 2017] [Castro and Fisler, 2020]



9

Making sense of our data

● program design skills
● other factors (e.g. quality 

attributes, value judgments)
Themes

Coding the data through a 
Grounded Theory-based 
analysis

Best paper
Koli Calling 
2017

SOLO levels
Structure of 
Observed 
Learning 
Outcomes

● Prestructural
● Unistructural
● Multistructural
● Relational
● Extended Abstract

Increasing levels 
of conceptual 
complexity



10

Making sense of our data

● program design skills
● other factors (e.g. quality 

attributes, value judgments)
Themes

Coding the data through a 
Grounded Theory-based 
analysis

Best paper
Koli Calling 
2017

SOLO levels
Structure of 
Observed 
Learning 
Outcomes

● Prestructural
● Unistructural
● Multistructural
● Relational
● Extended Abstract

Increasing levels 
of conceptual 
complexity

SOLO level Decomposing tasks and composing solutions

Prestructural Does not identify relevant tasks

Unistructural Identify tasks but no logical separation

Multistructural Decomposed tasks, no relational composition

Relational
Decomposition into tasks and concrete 
relationships between tasks



11

Making sense of our data

Session MTE CDF DTC LRF

1 R M U U

2 R R R U

3 R R R M

Session MTE CDF DTC LRF

1 U M U U

2 R R M U

3 U M M U

Students evolve in 
different skills at 
different paces

Students show 
non-monotonic 
progression of skills

Analyze and categorize new student data

Validating the framework with other HTDP instructors

Refine our framework descriptions 
and identify a new design skill

MTE CDF DTC LRF
(Program design skills)



12

How students move between tasks and code matter

Decomposing tasks and 
composing solutions

Composing expressions and 
defining functions

Using patterns meaningfully

Cyclic

● Back-and-forth between tasks and code throughout 
their process

● Consistently apply skills at the relational level
– Concretely describe task-relationships
– Task-level plan guide the composition of code

One-way

Code-focused

● Describe a task-level plan, but 
only at the onset of their process

● Regress to a code-focused 
process, failing to maintain 
connections between tasks, tasks 
and code

● Jump immediately into writing 
code and stay at the code-level

● No overall task-level plan, no 
insight on how tasks 
inter-operate

● No insight about how tasks 
impact code

● Task-level planning is a critical skill
● Not enough to apply skills at the relational 

level, need to be consistently relational
● Lack of consistency may indicate fragility of 

skills and need for help



13

● Students decompose the problem at the 
beginning of their process

● Need to make task-level planning a 
fundamental part of the courses
– “one function per task” wasn’t enough

STEP 1: DATA DEFINITION

A list-of-number is
- empty, or
- (cons number list-of-number)

STEP 2: EXAMPLES OF DATA

(define even-nums (list 4  2  6))
(define odd-nums  (list 5  1  27))

STEP 3: SIGNATURE & PURPOSE

sum-nums : list-of-numbers -> number
Produces the sum of numbers in the list

STEP 4: INPUT-OUTPUT EXAMPLES

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: TEMPLATE BASED ON DATA DEFINITION

(define (fxn-name list-input)
   (cond [(empty? list-input) ... ]
         [(cons? list-input) 
          ... (first list-input)
          (fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
  (cond [(empty? nums-list) 0 ]
        [(cons? nums-list) 
         (+ (first nums-list)
         (sum-nums (rest nums-list)))]))

What did we learn about teaching program design with HTDP?

● Difference between students who:
– reason about programs using the DR vs. 
– use the DR mechanically

● Need to teach DR beyond mechanical use
– course activities focused on following the 

DR to solve problems: not enough

● Activities that focus on how to leverage design techniques for task-level planning

Expanding examples to work out task decompositions

Teach task-level planning in advance Focus on meaningful use of design recipe steps

(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6))   ->  (list 3 7 10)
(adding-machine (list (+ 1 2) (+ 7) (+ 5 4 1))) ->  (list 3 7 10)

(rainfall (list 3 -8 -1 2 -2 1 -999 5))               ->  2
(rainfall (/ (sum (list 3 2 1) (count (list 3 2 1)))) ->  2



; sum: list[numbers] -> number
; Sum non-negatives in a list until -999
; Tasks: sum, ignore-negatives, sentinel
; Called by: average function
; Calls: none

14

STEP 1: DATA DEFINITION

A list-of-number is
- empty, or
- (cons number list-of-number)

STEP 2: EXAMPLES OF DATA

(define even-nums (list 4  2  6))
(define odd-nums  (list 5  1  27))

STEP 3: SIGNATURE & PURPOSE

sum-nums : list-of-numbers -> number
Produces the sum of numbers in the list

STEP 4: INPUT-OUTPUT EXAMPLES

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: TEMPLATE BASED ON DATA DEFINITION

(define (fxn-name list-input)
   (cond [(empty? list-input) ... ]
         [(cons? list-input) 
          ... (first list-input)
          (fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
  (cond [(empty? nums-list) 0 ]
        [(cons? nums-list) 
         (+ (first nums-list)
         (sum-nums (rest nums-list)))]))

What did we learn about teaching program design with HTDP?

● Activities that focus on how to leverage design techniques for task-level planning

Expanding purpose statements: describe tasks and relationships between tasks

Tasks provide a list of tasks 
a function addresses

Called by and Calls 
concretely illustrate task 
compositions

Teach task-level planning in advance Focus on meaningful use of design recipe steps

; truncate: list[numbers] -> list[numbers]
; Produce a list of numbers until -999
; Tasks: sentinel
; Called by: remove-negs function
; Calls: none

; remove-negs: list[numbers] -> list[numbers]
; Produce list of numbers without negatives
; Tasks: ignore-negatives
; Called by: sum function
; Calls: truncate to get data before -999

; sum: list[numbers] -> number
; Sum a list of numbers
; Tasks: sum
; Called by: average function
; Calls: remove-negs to get non-negatives



15

Engage students in design activities that involve more varied data contexts

What did we learn about teaching program design with HTDP?

Successful students
● described underlying 

concepts of patterns 
and techniques

Our study problems
● data-processing
● noisy
● significant elements
● underlying structure

Rainfall            
[ 2  -5  0  -3  4  -999  20  6 ]

Max-Temps    
[ 40  42  d  50  d  52  56  53 ]

Students who struggled
● discussed patterns and 

techniques only at 
syntax-level

● patterns are “fixed”

Need problems that —
● reinforce concepts underlying 

patterns
● practice use of techniques and 

patterns in novel contexts

Where students struggled
How to write data 
definitions, templates

DATA DEFINITION

A list-of-element is
- empty, or
- (cons string list-of-element), or
- (cons number list-of-element)

TEMPLATE BASED ON DATA DEFINITION

(define (fxn-name input)
   (cond [(empty? input) ... ]
         [(string? (first input)) ... ]
         [(number? (first input)) ... ]))

Course problems — what we found
● Had only designed for data that used the basic 

list data definition, template
● Not enough: limited range of problems and 

activities constrained understanding of design 
techniques and patterns



16

Overall Takeaways — What we learned

1. Students engage in their program design process either 
mechanically or by relating how parts of their process 
contribute to their overall solution

2. How HTDP students move between task- and code-level 
thinking indicate their success in designing solutions

3. Problem decomposition is a critical program design skill 
and needs to be explicitly made a part of the design process

4. Students may benefit from instructional activities and 
problems explicitly aimed at moving them beyond a 
mechanical use of their program design skills

5. Studying how students use the design skills put forth by a 
curriculum must consider both the curriculum and 
instructional activities used to teach the curriculum

6. Assessing students’ program design skills needs to consider 
both the level and consistency at which they are applying 
them

7. Developing a data-grounded theory for HTDP provides a 
language for explaining what students do, why they do 
them, and how these affect their design work

Future Directions

Further validation of the SOLO-based 
program design skills framework with other 
HTDP and non-HTDP CS1 courses
● Usability as a skill-assessment rubric?
● To what extent is our taxonomy 

curriculum-specific?

Study the impact of recommended 
instructional activities on how students 
perform on multi-task programming 
problems
● Do the activities move students from 

a mechanical to a relational use of 
design techniques and patterns?

Study the impact of programming language 
on how students design for multi-task 
programming problems
● Do students who learn in other 

programming languages struggle with our 
problems in similar ways as our students?

● What aspects of the languages have an 
impact on students’ design work?


