Development of a Data-Grounded Theory
of Program Design in HTD

How to Design Programs

(What we learned from about ~180 hours of watching and
listening to students as they program)

Francisco Castro

Advisor: Kathi Fisler, PhD

Computing Education Research (CER) Areas

Sociocultural
aspects

What culture
and practices
exist?

What tools to
design to aid
learning?

Assessments

Diversity

How to
measure
learning?

Accessibility

How to make
communities
open?

How to remove
barriers to
entry?

Debugging

How to teach
how to fix
errors?

Plagiarism

How to mitigate
cheating?

Language
design

How to design
languages for
learners?

Activities

How to design

activities to
teach
programming
Teacher concepts?
training

How best to
support CS
teachers?

How to

My dissertation o
explicitly

design

Muller ac.

Name: Maximum Value

Initial state: collection of values.

Goal: maximal value in the collection
Algorithm:
Initialize Max to First_value
While there are more items do
Assign next element to Next_Element
It Next_Element > Max then
Assign Next_Element to Max

+ 9-item guideline for constructing
problems that use the patterns

Ko ac.

If you need help finding the problem, ask for help.
Find what your program is doing that you do not want it to do
Write the Line number inside of the program
and separate with commas.
SET 'possibleCauses' to any lines of the program that
might be responsible for causing that incorrect 'behavior’
FOR EACH 'cause' IN 'possibleCauses’
Navigate to 'cause’
Ask for help if you need guidance on how.
Look at the code to verify if it causes the incorrect behavior
IF 'cause' is the cause of the problem
If you need help finding the problem, ask for help.
Find a way to stop 'cause' from happening
Ask for help if you need guidance on how.
Change the program to stop the incorrect behavior
Ask for help if you need guidance on how.
Mark the task as finished
RETURN nothing
IF you did not find the cause
Ask for help finding other possible causes
Restart the strategy
RETURN nothing

teach program

strategies?

De Raadt ac.

Position 1

Position 1 Position 2 Position 1 Position 2
By

int tempPosition;

| 150ived the problem

if ‘cause is the cause of the problem m

Temp Pos ‘ Temp Pos &

#include <stdio.h>

int main() {
int firstPosition = 5; // First position containing value to swap
int secondPosition = 6; // Second position containing value to swap

// Temporary position for swap

// output the numbers after the swap
printf ("Before Swap..
printf ("First: %i, Second: $i\n", firstPosition, secondPosition);

A\n")

// Swap the two numbers in a triangular swap
// 1. Copy the value from the second position to temp
tempPosition = secondPosition;

// 2. Copy the value from the first position to the second
secondPosition = firstPosition;

// 3. Copy the value from the temp position to the first
firstPosition = tempPosition;

// Output the numbers after the swap

printf ("After Swap...\n");
printf("First: %i, Second: %i\n", firstPosition, secondPosition);

Please select your Strategy
7

Previous 'Ia' Variabl.es .
Please separate multiple inputs with a comma

possibleCauses Ew 24 +

cause 5

IF Statement Steps

2 Step 1. Find the value of the variable using the
variables pane on the right.

& Step 2. Inspect the condition in the statement. If the
condition is true, click True. Otherwise, click False.

Step 3. The computer will go to the next statement.

STEP 1: DESCRIBE THE SHAPE OF THE INPUT

A list-of-number is THE DESIGN
- empty, or RECIPE

- (cons number list-of-number)
STEP 2: WRITE EXAMPLES OF THE INPUT

(define even-nums (list 4 2 6))
(define odd-nums (list 5 1 27))
(define one-num (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

sum-nums : list-of-numbers -> number

Produces the sum of numbers in the list

STEP 4: ILLUSTRATE THE FUNCTION’S PURPOSE/W/ INPUT-OUTPUT EXAMPLES

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: WRITE A FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STE

(define (fxn-name list-input)
(cond [(empty? list-input) ...]
[(cons? list-input) ... (first list-input)
(fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
(cond [(empty? nums-list) 0]
[(cons? nums-list) (+ (first nums-list)
(sum-nums (rest nums-1ist)))1))

STEP 7: TEST AND REFINE

How to Design Programs (HTDP) teaches an explicit design process,

but has not been studied in terms of how students use it in situ

o How do students allocate tasks? (traversals/accums/etc)

o Need to study how students use design recipe to identify how to
teach it in a way that’s helpful to students

Early HTDP work

e Felleisen ac.
Introduced HTDP and accompanying tools

e Bienusa ac, Crestani ac, Sperber ac.
Germany: Experience reports of designing a CS1 curriculum

e Fisler, Fisler ac.
High-level solution structures, errors that HTDP students
produced

e Ren ac.
HTDP for categorizing students’ office hours questions

e Wrenn ac.
Tool for providing feedback on examples written (pretty cool)

STEP 1: DESCRIBE THE SHAPE OF THE INPUT

A list-of-number is THE DESIGN
- empty, or RECIPE

- (cons number list-of-number)
STEP 2: WRITE EXAMPLES OF THE INPUT

(define even-nums (list 4 2 6))
(define odd-nums (list 5 1 27))
(define one-num (list 142))

STEP 3: DESCRIBE THE PROPOSED FUNCTION

sum-nums : list-of-numbers -> number
Produces the sum of numbers in the list

STEP 4: ILLUSTRATE THE FUNCTION’S PURPOSE/W/ INPUT-OUTPUT EXAMPLES

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: WRITE A FUNCTION TEMPLATE BASED ON THE INPUT SHAPE (STE

(define (fxn-name list-input)
(cond [(empty? list-input) ...]
[(cons? list-input) ... (first list-input)
(fxn-name (rest list-input))]))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
(cond [(empty? nums-list) 0]
[(cons? nums-list) (+ (first nums-list)
(sum-nums (rest nums-1ist)))1))

STEP 7: TEST AND REFINE

How to Design Programs (HTDP) teaches an explicit design process,

but has not been studied in terms of how students use it in situ

o How do students allocate tasks? (traversals/accums/etc)

o Need to study how students use design recipe to identify how to
teach it in a way that’s helpful to students

How do HTDP-trained students use the design recipe to solve
multi-task programming problems?

DRQ1. What program design skills do HTDP-trained
students exhibit when developing solutions for
multi-task programming problems?

DRQ2. What interactions do we observe between students’
program design skills and how do these contribute
to their development of solutions for multi-task
programming problems?

DRQ3. How do HTDP-trained students’ use of program
design skills evolve during a CS1-level course?

DRQ4. How do HTDP-trained students approach multi-task
programming problems with novel components?

Dissertation Research Overview

Research Question Data
DRQ1. What program design skills do HTDP-trained e Video captures of programming sessions while solving
students exhibit when developing solutions for multi-task problems

multi-task programming problems?
¢ Interview, think-aloud, code submissions, scratch work, field

observations

DRQ2. What interactions do we observe between students’ e Interview, think-aloud, code submissions, scratch work, field
program design skills and how do these contribute to observations
their development of solutions for multi-task
programming problems?

DRQ@3. How do HTDP-trained students’ use of program e Interview, think-aloud, code submissions, scratch work, field
design skills evolve during a CS1-level course? observations from multiple points within a CS1 course

DRQ4. How do HTDP-trained students approach multi-task « Video captures of programming sessions while solving
programming problems with novel components? multi-task problems

e Interview, think-aloud, code submissions, scratch work, field
observations on two problems of varying degrees of novelty

Overall Takeaways - What we learned

1. Students engage in their program design process
either mechanically or by relating how parts of

6. Assessing students’ program design skills needs to
consider both the level and consistency at which

R d .] Relational .
their process contribute to their overall solution they are applying them
Mechanical v
7. Developing a data-grounded theory for HTDP
provides a language for explaining what students
2. How HTDP students move between task- and do, YVhy they do them, and how these affect their
code-level thinking indicate their success in Use a for’ loop Get non-negatives, design work
and if ... then sum and count

designing solutions

3. Problem decomposition is a critical program
design skill and needs to be explicitly made a
part of the design process

4. Students may benefit from instructional activities and
problems explicitly aimed at moving them beyond a
mechanical use of their program design skills

5. Studying how students use the design skills put forth Tasks provide a st of tasks
by a curriculum must consider both the curriculum Coeabyamacals
and instructional activities used to teach the compositons

curriculum

Timeline of Studies

2015 [Castro and Fisler, 2016] 2016 [Castro and Fisler, 2017]

Study 1: Exploring how HTDP

students design for new problems work throughout a CS1 course

Students worked on Adding-
Machine during a weekly lab

1 2 06 7 0 5 4 0 0 6] ¢ Interview sessions on homework

\\T_

L3 7 91

¢ Video-captured IDE activity
o Retrospective survey (how started,
use of DR, got stuck, notes)

problems + solution comparison
e Think-aloud session on Rainfall problem

Coding through a Grounded Theory
analysis of qualitative data

Preliminary observations of
students’ design processes
Data wasn'’t rich enough

J L

Study 2: Exploring students’ design

Longitudinal study — conducted studies
with students at multiple points during CS1

L2 -5 0 -3 4 -999 20 6] —» 2

2017

Study 3: Validating the SOLO skills
framework with HTDP instructors

Recruited HTDP instructors from
different institutions

¢ Assessed students based on the skills
identified in the skills taxonomy

o Explain ratings

o Describe other factors they looked for
when assessing students

Thematic coding of instructor responses

N\

Framework of program

design skills

Need to validate the
framework with other

HTDP experts

N

Timeline of Studies

- o

2017 [Fisler and Castro, 2017] 2018 2019 [Castro and Fisler, 2020]
Study 4: Exploring how students Study 5: Multi-university study exploring how students move

navigate schemas to design solutions between task-level and code-level thinking on multi-task problems

Developed design process narratives Sessions: Think-aloud + retrospective interviews on multi-task problems

from think-aloud data « Rainfall

Discussions of solution structure [2 -5 0 -3 4 -99 20 6] 2

« Discussions of problem tasks o Max-Temps
¢ Reasoning around edits [40 42 d 50 d 52 56 53] e Grounded theory-based analysis of
¢ Selection of schemas think-alouds, field observations, code

e Developed design process narratives
[42 50 56]

e N
Deeper analysis of Study 2 data

Explore findings on students
from a different university

Use our skills framework as

analytical lens for new data
\ J

Making sense of our data

Coding the data through a

* program design skills Grounded Theory-based

Themes .« other factors (e.g. quality vsi
. . analysis
attributes, value judgments)
. SOLO level Methodical choice of Composi pressi Decomposing tasks and Leveraging multiple
tests and examples within function bodies composing i repr ions of functi
= of Frior Krowledge Docs not Knowtiow)towilte lfzyisglrzlbllgf:ll" 13.’;:]:(\)I:l ;:1::31(5 Just dives in and writes
cons | Tacks & Decomp t‘e_’r_' - Dt 3
E ljs’_,.) Prestructural :ﬁ:i/::: Iﬁ:gr:: z(s):f]:“:sist (I;)e(;e;en:lf::;m:ow 0 how to translate elements of a code; uses only a single
i e s “N“‘“ o hidc ! problem statement into relevant | representation
|
= S | tasks
‘i"j ‘L—/”JL_’WT(_—W’_J\ Able to write tests;
g tesk gt 1o types ° | S facton Wit one T pogron et ot 7 | descriptions of test cases do | Able to define functions in a Able to identify relevant tasks Blindly follows the design
ST == Unistructural | MOt €xplain the purpose of | simple context: uses primitive | but no reflections of separate recipe; sees each function
= \ the test(s): does not express | operations on primitive types | tasks when talking about the representation as independent
g ﬂu;mm:‘mm:M) Ve feune Sret = | the |de.a of varying test in a function body code of others
EEE T A scenarios
i St y < . | Able to define functions whose | Able to identify relevant tasks:
| Able to write multiple tests; 7 3 4 A
E bodies contain nested non- articulates the delegation of .
describes the purpose of £ : : 5 Articulates a sense of the
Sutividunl 4ests but: does ot primitive expressions or tasks into separate functions/ function representations
Multistructural 5 TREE function calls, but does not expressions but fails to articulate : <
any ¢ 4 B’ talking about or referring
. the of how | how to effectively compose the .
between or collective % 2 g to the same computation
S S the results of calling a function | tasks in a way that solves the
PYH return to the calling context problem
: — Able to define functions whose | Able to identify relevant tasks: | Articulates a mechanism
Able to write tests: identifies 2 % 4 % 2 ¢
A bodies contain nested non- articulates the delegation of through which function
a collective purpose for the B e 5 z g
tests, i.e. boundaries, edge primitive expressions or tasks into separate functions/ representations are related,
Relational s 2 function calls and is able to expressions and can articulate e.g. template uses types to
cases, test space coverage, 4 3 $ 2
but limited within the articulate the semantics of how | how to effectively compose the | drive the code structure,
the results of calling a function | tasks in a way that solves the execution of a program
context of the problem =
return to the calling context problem connects to a test space, etc.

SOLO levels

Structure of
Observed
Learning
Outcomes

e Prestructural
o Unistructural
o Multistructural
Relational

Increasing levels
of conceptual
complexity

o Extended Abstract

-

_

Designing a Multi-Faceted SOLO Taxonomy to Track Program
Design Skills Through an Entire Course

Best paper
Koli Calling

Francisco Enrique Vicente Castro

Worcester Polytechnic Institute
fgcastro@cs.wpi.edu

Kathi Fisler
Brown University and WPT
Kfisler@cs.brown.edu

~

matically, as they gain
how program-design

2017 ABSTRACT design differently, and perhaps more syste
This paper explores how to assess students’ skills in program de- in ience and confidence. t i
sign and how those skills evolve across an entire CS1 course. We skills evolve in novice learners provides valuable input to those who
s 5 S T -3 i i desien curricula and pedagoev. Such understandine reauires both

9

Making sense of our data

Coding the data through a
Grounded Theory-based
analysis

o program design skills
Themes .« other factors (e.g. quality
attributes, value judgments)

Methodical choice of Ci ing expressi De ing tasks and

= A s i SOLO level tests and examples M composing solutions
- InY YT} “: 7 oL |

| % of Frior Krowls i W for a problem: does not know Just dives in and wri
Bgressons & Fuctors | Tads & = Mﬁtﬁ) 4 | TSt expressions: misses | Does not know how (o e J 4
X p

tadonclos a odo L)
i e s | None
\ [

Leveraging multiple
ations of functions

=g | R . - ‘ SOLO level Decomposing tasks and composing solutions
gt g W w&m o 5 wml-r‘vriim‘um funeton ~ | 2 =1
Prestructural Does not identify relevant tasks
— = o B Unistructural Identify tasks but no logical separation

Multistructural Decomposed tasks, no relational composition

Decomposition into tasks and concrete

Relational relationships between tasks

()
Designing a Multi-Faceted SOLO Taxonomy to Track Program

Design Skills Through an Entire Course
Best paper

Francisco Enrique Vicente Castro Kathi Fisler
SOLO levels e Prestructural Koli Callin Worcester Polytechnic Institute Brown University and WPI
: Increasing levels 9 Rmstro@eswpisda i
St ructure Of (] U nistructura I f | 2017 ABSTRACT design differently, and perhaps more systematically, as they gain
. . L . 3 i d confidence. U ing h v

Observed o Multistructural ©' conceptua e et sy v QT A e o

. com p | ex | ty k B s SR T S desien curricula and vedagogv. Such understandine reauires both
Learning « Relational

Outcomes o Extended Abstract 10

Making sense of our data

Analyze and categorize new student data

Students evolve in

different skills at
different paces

Students show

non-monotonic
progression of skills

R
R
u
R
u

U
M
U
U
U

Validating the framework with other HTDP instructors

Decomposing tasks and
composing solutions

This student makes little or no attempt to decompose the problem, with a faint hint of "oh we need a helper" right at the
end. It seems that this student doesn't yet have a clear sense of the scope or boundaries of the patterns that he/she is
learning. 1 feel that a successful student will use patterns like tools in a toolbox, and say "oh, | need one of these and
two of these, and then staple it together,” where this student is still in the phase of trying to figure out which end of the
hammer to hold, and whether it can do the whole job. Until you know the patterns well, you don't know their limitations

|k e

A Reemy
/\X\v\ﬁ\ N Y Siwb

\~ the accumulator on the falt

NN
&@X‘”&\gw Ko
Wer? &

: ¥

~(9) Soif 1 wanted to avera
all the positive numbers ar
positive numbers. Maybe i

question because none of t
still if it's false then I don't
accumulator should be in t
right. I'm going to try it ag
2,try 1,2 or 1 let's see pro
1. So there is something uj
gone through check to sce
the first one to the rest. So
that out by 1 plus zero whi
through it again and made

Refine our framework descriptions
and identify a new design skill

MTE

(Program design skills)

CDF

DTC

LRF

SOLO level

Methodical choice of
tests and examples

< -

i o
within function bodies

Decomposing tasks and

c

Leveraging multiple
repr ions of functi

Prestructural

Does not know how to write
tests/test expressions; misses
the structure of tests, ie input
and output

Does not know how to
define a function

Does not identify relevant tasks
for a problem; does not know
how to translate elements of a
problem statement into relevant
tasks

Just dives in and writes
code: uses only a single
representation

Unistructural

Able to write tests:
descriptions of test cases do
not explain the purpose of
the test(s): does not express
the idea of varying test
scenarios

Able to define functions in a
simple context: uses primitive
operations on primitive types
in a function body

Able to identify relevant tasks
but no reflections of separate
tasks when talking about the
code

Blindly follows the design
recipe: sees each function
representation as independent
of others

Multistructural

Able to write multiple tests;

describes the purpose of

individual tests but does not
i any ionshi

Able to define functions whose
bodies contain nested non-
primitive expressions or
function calls, but does not

between or collective
purpose for the tests

the s ics of how
the results of calling a function
return to the calling context

Able to identify relevant tasks:
articulates the delegation of
tasks into separate functions/
expressions but fails to articulate
how to effectively compose the
tasks in a way that solves the
problem

Articulates a sense of the
function representations

talking about or referring
to the same computation

Relational

Able to write tests; identifies
a collective purpose for the
tests, i.e. boundaries, edge
cases, test space coverage,
but limited within the
context of the problem

Able to define functions whose
bodies contain nested non-
primitive expressions or
function calls and is able to
articulate the semantics of how
the results of calling a function
return to the calling context

Able to identify relevant tasks:
articulates the delegation of
tasks into separate functions/
expressions and can articulate
how to effectively compose the
tasks in a way that solves the
problem

Articulates a mechanism
through which function
representations are related,
e.g. template uses types to
drive the code structure,
execution of a program
connects to a test space, etc.

SOLO level Use of Patterns
Prestructural Does not know what code pattern to retrieve
Unistriictiral Blindly reLrieves_ and w_rit?s a list-traversal pattern (list template,
), without insight about how the problem tasks fit the pattern
Recognizes the need for multiple traversals for multiple tasks, but doesn’t
Multistructural | recognize/understand the limits of the pattern relative to the tasks and
inappropriately conflates the patterns used
Can separate traversal-tasks in a meaningful way through an appropriate
Relational assignment of tasks to patterns (multiple templates) or parts of patterns
(multiple)

1

How students move between tasks and code matter

Decomposing tasks and
composing solutions

One-way

o Describe a task-level plan, but
only at the onset of their process

« Regress to a code-focused
process, failing to maintain
connections between tasks, tasks
and code

Cyclic

o Back-and-forth between tasks and code throughout
their process

« Consistently apply skills at the relational level
- Concretely describe task-relationships
- Task-level plan guide the composition of code

_— \J
\

7

e Task-level planning is a critical skill

o Not enough to apply skills at the relational
level, need to be consistently relational

o Lack of consistency may indicate fragility of
skills and need for help

Code-focused

e Jump immediately into writing
code and stay at the code-level

o No overall task-level plan, no
insight on how tasks
inter-operate

e No insight about how tasks
impact code

Composing expressions and
defining functions

Using patterns meaningfully

12

What did we learn about teaching program design with HTDP?

Teach task-level planning in advance Focus on meaningful use of design recipe steps

e Students decompose the problem at the
beginning of their process

o Difference between students who:
- reason about programs using the DR vs.

- use the DR mechanically
e Need to make task-level planning a

fundamental part of the courses
- “one function per task” wasn't enough

o Need to teach DR beyond mechanical use
- course activities focused on following the
DR to solve problems: not enough

o Activities that focus on how to leverage design techniques for task-level planning

Expanding examples to work out task decompositions

(adding-machine (list 1207 0541006)) -> (list 37 10)
(adding-machine (list (+ 1 2) (+ 7) (+ 54 1))) -> (list 3 7 10)

(rainfall (list 3 -8 -1 2 -2 1 -999 5)) -> 2
(rainfall (/ (sum (list 3 2 1) (count (list 3 2 1)))) -> 2

STEP 1: DATA DEFINITION

A list-of-number is

- empty, or

- (cons number list-of-number)
STEP 2: EXAMPLES OF DATA
(define even-nums (list 4 2 6))
(define odd-nums (list 5 1 27))
STEP 3: SIGNATURE & PURPOSE

sum-nums : list-of-numbers -> number

Produces the sum of numbers in the list

STEP 4: INPUT-OUTPUT EXAMPLES

(check-expect (sum-nums even-nums) 12)
(check-expect (sum-nums odd-nums) 33)

STEP 5: TEMPLATE BASED ON DATA DEFINITION

(define (fxn-name list-input)
(cond [(empty? list-input) ...]
[(cons? list-input)

. (first list-input)
(fxn-name (rest list-input))1))

STEP 6: FILL IN THE DETAILS

(define (sum-nums nums-list)
(cond [(empty? nums-list) 0 1
[(cons? nums-list)
(+ (first nums-list)

(sum-nums (rest nums-list)))]1))

STEP 1: DATA DEFINITION

What did we learn about teaching program design with HTDP?

A list-of-number is
- empty, or

Teach task-level planning in advance Focus on meaningful use of design recipe steps - (cons number 1list-of-number)

STEP 2: EXAMPLES OF DATA

(define even-nums (list 4 2 6))

o Activities that focus on how to leverage design techniques for task-level planning (define odd-nums (list 5 1 27))

Expanding purpose statements: describe tasks and relationships between tasks STEP 3: SIGNATURE & PURPOSE

sum-nums : list-of-numbers -> number

. .) Produces the sum of numbers in the list
; sum: list[numbers] -> number ._truncate: list[numbers] -> list[numbers]

; Sum non-negatives in a list until -999 ; Produce a list of numbers until -999 STEP 4: INPUT-OUTPUT EXAMPLES
; Tasks: sum, ignore-negatives, sentine ; Tasks: sentinel (check-expect (sum-nums even-nums) 12)

; Called by: erage function ; Called by: remove-negs function (check-expect (sum-nums odd-nums) 33)

none o . none
STEP 5: TEMPLATE BASED ON DATA DEFINITION

remove-negs: list[numbers] -> list[numbers] (define (fxn-name list-input)
: Produce list of numbers without negatives (cond [(empty? list-input) ...]

Tasks provide a list of tasks ; Tasks: ignore-negatives HAEEIN SRSl

a function addresses ; Called by: sum function . (first list-input)
truncate to get data before -999

Called by and Calls

concretely illustrate task
compositions

(fxn-name (rest list-input))1))

STEP 6: FILL IN THE DETAILS

; sum: list[numbers] -> number
L] (define (sum-nums nums-1list)

(cond [(empty? nums-list) 0 1

[(cons? nums-1list)
; Called by: average function (+ (first nums-list)

; Sum a list of numbers
; Tasks: sum

remove-negs to get non-negatives (sum-nums (rest nums-list)))1))

What did we learn about teaching program design with HTDP?

Engage students in design activities that involve more varied data contexts

; A Newday is one of

;— "new—-day"
;— Number
#;
(define (nd-temp nd)
(cond [(string=? nd
[(number? nd)
(define (list-temp nd)
(cond [(string? nd)
[(

number? nd)

Our study problems

 data-processing

e NOisy

« significant elements
¢ underlying structure

Rainfall
[2 -5 0 -3 4 [99¢9
Max-Temps

[40 42 d 50 (d)(52

Where students struggled

How to write data
definitions, templates

"new-day") ...]

--1))

(list (list-temps (rest nd)))]
(cons (first nd) (list-temps (rest nd)))]))

DATA DEFINITION

A list-of-element is

- empty, or

- (cons string list-of-element), or
- (cons number list-of-element)

Successful students
o described underlying

20 6]
concepts of patterns techniques only at
and techniques syntax-level
56 53] o patterns are “fixed”

—

Students who struggled
e discussed patterns and

Course problems - what we found

e Had only designed for data that used the basic
list data definition, template

e Not enough: limited range of problems and
activities constrained understanding of design
techniques and patterns

TEMPLATE BASED ON DATA DEFINITION

(define (fxn-name input)
(cond [(empty? input) ...]
[(string? (first input)) ...
[(number? (first input)) ...

Need problems that -

o reinforce concepts underlying
patterns

e practice use of techniques and
patterns in novel contexts

15

Overall Takeaways - What we learned

1. Students engage in their program design process either
mechanically or by relating how parts of their process
contribute to their overall solution

2. How HTDP students move between task- and code-level
thinking indicate their success in designing solutions

3. Problem decomposition is a critical program design skill
and needs to be explicitly made a part of the design process

4. Students may benefit from instructional activities and
problems explicitly aimed at moving them beyond a
mechanical use of their program design skills

5. Studying how students use the design skills put forth by a
curriculum must consider both the curriculum and
instructional activities used to teach the curriculum

6. Assessing students’ program design skills needs to consider
both the level and consistency at which they are applying
them

7. Developing a data-grounded theory for HTDP provides a
language for explaining what students do, why they do
them, and how these affect their design work

Future Directions

Further validation of the SOLO-based
program design skills framework with other
HTDP and non-HTDP CS1 courses

« Usability as a skill-assessment rubric? El
« To what extent is our taxonomy E/I T
curriculum-specific?

Study the impact of recommended
instructional activities on how students
perform on multi-task programming
problems

e Do the activities move students from
a mechanical to a relational use of
design techniques and patterns?

Study the impact of programming language
on how students design for multi-task
programming problems

e Do students who learn in other
programming languages struggle with our
problems in similar ways as our students?

e What aspects of the languages have an

impact on students’ design work? 16

