
AN ANALYSIS OF JAVA PROGRAMMING BEHAVIORS,

AFFECT, PERCEPTIONS, AND SYNTAX ERRORS

AMONG LOW-ACHIEVING, AVERAGE, AND

HIGH-ACHIEVING NOVICE PROGRAMMERS*

MA. MERCEDES T. RODRIGO, THOR COLLIN S. ANDALLAZA,

FRANCISCO ENRIQUE VICENTE G. CASTRO,

MARC LESTER V. ARMENTA, THOMAS T. DY

Ateneo de Manila University

MATTHEW C. JADUD

Berea College

ABSTRACT

In this article we quantitatively and qualitatively analyze a sample of novice

programmer compilation log data, exploring whether (or how) low-achieving,

average, and high-achieving students vary in their grasp of these intro-

ductory concepts. High-achieving students self-reported having the easiest

time learning the introductory programming topics. In a quantitative analysis,

though, high-achieving and average students were: 1) more effective at

debugging (on average, as quantified by Jadud’s Error Quotient (EQ)) than

low-achieving students; and 2) were least confused, as quantified using Lee’s

confusion metric. However, the differences in EQ and confusion between

groups were not statistically significant. This implied that all groups struggled

with programming to similar extents. This finding was further supported by

*This research was supported by the Loyola Schools Faculty Work Grant entitled, “A

Usability Study of Four First Programming Languages” of the Ateneo de Manila University.

293

� 2013, Baywood Publishing Co., Inc.

doi: http://dx.doi.org/10.2190/EC.49.3.b

http://baywood.com

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 49(3) 293-325, 2013

the qualitative analysis, in which we found that no group was immune to a

particular error type. All groups had difficulties finding small errors,

including: differences in capitalization and missing commas; recognizing

the scope and lifetime of a variable; confusing the assignment operator

with the equal comparator; misusing the variants of the print statement;

misusing or failing to use parameters; and implementing principles of

object-oriented design such as information hiding and encapsulation. For

computer science researchers and educators, the findings suggest learning

pitfalls against which teachers can guard during instruction. The findings

also imply the need for more reactive and anticipatory support environments,

and the usefulness of large scale data collection and analysis in the study

of novice programmers.

Programming is an essential skill that all students of computer science and related

disciplines must learn. It is the primary means through which programmers

turn abstractions into reality and, in doing so, engage in computation. To learn

to program is to acquire a body of interrelated knowledge, skills, and practices.

At the most basic level, a student has to learn to formulate a logical solution to

a problem, express that logic in a formal computer language, and locate and

remove syntactic or logical errors (bugs).

These skills are not easy to develop. A number of international studies

have shown that many students’ understanding of programming continues to

be fragile even after one or two semesters of formal education (see Lister, Adams,

Fitzgerald, Fone, Hamer, Lindholm, et al., 2004; McCracken, Almstrum, Diaz,

Guzdial, Hagan, Kolikant, et al., 2001). Many students were unable to predict

the outcome of a code fragment or complete a short piece of code so that it

performs a specified function (Lister et al., 2004). Others had a hard time with

problem abstraction, the first step in arriving at a solution to a programmatic

problem (McCracken et al., 2001).

All learners experience these difficulties, and researchers have investigated

whether they do so to the same extent. This study attempts to quantify and qualify

the differences, if they exist, among low-achieving, average, and high-achieving

students. We examine differences along four dimensions: Jadud’s Error Quotient

(EQ) (2006), Lee’s confusion rate (2011), student self-reported perceptions of

the ease or difficulty of introductory computer science topics, and a qualitative

analysis of student code. Our analysis answers four questions:

1. How do the groups differ in terms of EQ?

2. How do the groups differ in terms of confusion rate?

3. How do the groups differ in their perception of the ease or difficulty in

learning introductory computer science topics?

4. What errors or misconceptions is each group more prone to make?

294 / RODRIGO ET AL.

PRIOR WORK

Since at least the 1980s and using a variety of methods, computer science

educators and researchers have been trying to learn more and more about what

programming students know and do not know. The study of Bonar and Soloway

(1983) made use of videotaped interviews to understand how novices program.

They found that a gap existed between students’ “step-by-step natural language”

and a programming language’s syntax. Novices were aware of what they wanted

to achieve but were unable to express this in a programming language.

Researchers have found examinations of paper-based outputs informative.

For example, process journals (Lewandowski, 2003) provided researchers with

qualitative information about students’ problem-solving processes; for example,

how they approached the program specifications, what bugs they encountered,

what significant roadblocks they had to overcome. The journals also gave

instructors the opportunity to empathize with student frustration or make helpful

suggestions. The ways in which novices grouped programming concepts were

revealing of what they knew and didn’t know (Lewandowski, Gutschow,

McCartney, Sanders, & Shinners-Kennedy, 2005). The most abstract concepts

tended to be classified under “don’t know” or “not sure.” A study of paper-based

object-oriented designs revealed that students sometimes define classes they

never use, or else invoke classes they never define (Thomasson, Radcliffe, &

Thomas, 2006).

Lister et al. (2004) examined the doodles (defined as any kind of marking

made by the student; McCartney, Moström, Sanders, & Seppälä, 2005) that

students made while tracing through paper-based code excerpts. They noted that

effective novices made use of notes to supplement working memory, while

less effective novices made use of working memory alone. These findings were

corroborated by de Leon et al. (2008), who found that students who opted to

doodle tended to be among the highest achievers in their classes, with scores of

91 to 100 out of a possible 100 in the midterm examination. On the other hand,

85% of the students who opted not to doodle had midterm scores of 90 out of

100 or lower.

Of particular interest to researchers is how students cope with errors. Since

the 19th century, engineers in many fields have used the term “bug” to mean

“a small error.” In the 1960s, on the Univac 1107 at Case University, it was

“possible to debug a moderate size program in less than an hour by gaining

frequent access to the computer” (Lynch, 1967). Despite its long history, it is

only recently that systematic exploration of syntactic errors made by programmers

has been pursued vigorously.

In the seminal study by Perkins et al. (1986), researchers observed students

learning to program in BASIC. They noted that students fell into one of three

categories: Stoppers, Movers, and Extreme Movers. Movers referred to students

who identify programming errors and systematically experiment with solutions

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 295

until they gravitate to an appropriate solution. Stoppers are students who give

up on the problem-solving process. Finally, Extreme Movers, also known as

Tinkerers, experiment with solutions haphazardly and therefore struggle or fail

to arrive at real solutions.

Recent research has shown that these categorizations are not absolute. Worsley

and Blikstein’s (2013) detailed study of student compilations showed that students

use their code updates differently. Some update their code to check syntax while

others do so to optimize their logic. In some cases, students alternated between

making small and large changes, or tinkering and planning respectively.

What makes the examination of these details possible is the collection and

analysis of online protocols (defined as the collection of all programs submitted

to the compiler; Bonar, Khrlich, Soloway, & Rubin, 1982) to achieve an under-

standing of student problem-solving experiences. Researchers have documented

the incidence of compiler errors (see Denny, Luxton-Reilly, & Tempero, 2012;

Dy & Rodrigo, 2010; Jackson, Cobb, & Carver, 2005) and have found that

sets of most common errors tended to be the same across different populations:

missing semicolons, undefined identifiers, missing braces or brackets, and incom-

patible types. The implication on pedagogy was that support for these error

messages in particular was needed.

Online protocols reveal how well students cope with these errors both

behaviorally and emotionally. Ahmadzadeh et al. (2005) found that ineffective

debuggers demonstrated knowledge of a debugging technique in one instance,

but were unable to transfer that knowledge to another instance. The study of

Jadud (2006; to be discussed in greater detail later) proposed EQ as a metric

for quantifying student debugging ability. Lee (2011), on the other hand,

examined online protocols to quantify student confusion (also to be discussed in

greater detail later) and its effect on achievement (Lee, Rodrigo, Baker, Sugay,

& Coronel, 2011).

Online protocols also imply what might be wrong with our computer languages

and integrated development environments and how these might be improved.

Despite the knowledge that small syntactic errors are common in the practice

of programming, the primary tool we present to novices (a compiler) is one

that strictly reacts to their errors, and provides little to no support for the learning

of the practice of programming. Decker and Anderson in their 1986 paper

From Reactive to Proactive: A Continuum present a continuum model (Figure 1)

for thinking about educational programming that might serve as an initial lens

for focusing future work on novice programmer behavior and, importantly, tools

to support that work.

Many of the tools we give our students today are primarily reactive-defensive

and reactive-responsive. In most novice programming environments, there is

support for syntax highlighting and code indentation based on language syntax;

we would claim that this kind of support is reactive-defensive, as it attempts to

provide a learner with visual cues regarding the correctness of their program’s

296 / RODRIGO ET AL.

syntax before they press the “compile” button. The compiler itself is reactive-

responsive, as it is only capable of reporting errors when the student invokes it.

To further compound novice programmer difficulties, some of the errors that

compilers report are non-literal (Dy & Rodrigo, 2010; Hughes, Jadud, & Rodrigo,

2010), meaning they do not accurately reflect what was wrong with the

code and do not guide the student toward a solution. Indeed, Traver (2010)

recommended the redesign of compiler error messages so that they are clearer,

more specific, and properly phrased.

A better understanding of student difficulties, errors, misconceptions,

behaviors, affective states, and so on can lead to the development of anticipatory,

proactive tools for teaching, learning, and assessment. Efforts in this direction

date back to at least the late 1980s onwards. Syntax-directed editors such as

those discussed by Goldenson (1989) and Miller et al. (1994) enforce the creation

of a syntactically correct program by allowing the student to enter only syntac-

tically correct code at any point of the editing process. During the editing process,

all unfilled parts of the program are substituted with placeholders. Writing a

program is thus a process of repeatedly selecting from a list of allowed fillers

per placeholder, eliminating the possibility of syntax errors. In recent years,

systems such as Scratch (Maloney, Resnick, Rusk, Silverman, & Eastmond,

2010) and Dann, Cooper, and Pausch (2008) follow the same philosophy. They

use highly graphical, drag-and-drop or menu driven interfaces to restrict what

programming constructs a student can insert at any point in a program.

In more full-featured development environments (for example, Eclipse, a com-

mon open source development environment for the Java programming language),

a programmer’s code is continuously recompiled and analyzed for a wide variety

of errors, in much the same way that modern word processors are capable of

spell checking a document continuously as it is being written. The group of

Truong et al. (2004) developed a tool that could help analyze program structure

without running the code to determine potential bugs, unnecessary complexity,

or high maintenance areas.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 297

Figure 1. Decker and Anderson’s (1986) continuum for

thinking about educational programming.

A number of environments have been developed to assist students with

debugging. In the early 1990s, Freund and Roberts (1996) developed THETIS,

an integrated environment with improved error reporting and debugging

visualization tools. More recently, the groups of Sison and Chen (2005) and

Kummerfeld and Kay (2006) developed web-based reference systems to sup-

port students learning C and C++. Both systems cataloged compiler error

messages and proposed at least one possible correction, based on a pre-defined

bug library. Dy and Rodrigo (2010) developed a system that takes non-literal

Java compiler error messages and tries to infer what might actually be wrong

with the code. HelpMeOut by Hartman and colleagues (2010) is a social

recommender system that supports debugging by suggesting solutions from the

experiences of past programmers.

Capitalizing on student online protocols opens the door to the assessment of the

programming process, not just its final outcome. The work of Lane & VanLehn

(2005) and Vee et al. (2006) measured the distance between students’ intermediate

solutions and a known solution to a problem. Known as intention-based scoring,

this approach enabled researchers to assess students’ ability to produce

algorithmically correct code.

Other types of support tools have also been built on top of online protocols.

Retina (Murphy, Kaiser, Loveland, & Hasan, 2009) was a tool that collected

online protocols in a database for post-hoc inspection. Retina had the ability to

send recommendations to students when they had a high rate of errors, were

spending too long on an assignment, or were making the same error multiple

times. The BlueJ Browser (Rodrigo, Tabanao, Lahoz, & Jadud, 2009) had similar

features. It allowed a post-hoc analysis of student submissions, generating reports

such as most common errors, and time between compilations.

As mentioned earlier, the goal of this study is to quantify and qualify the

differences among low-achieving, average, and high-achieving students. To do

so, we make use of some of the techniques and approaches documented in prior

work—EQ (Jadud, 2006), confusion rate (Lee, 2011), self-reports, and a qualita-

tive analysis of student online protocols.

METHODS

The population under study was composed of Ateneo de Manila University

Computer Science (CS) freshmen and Management Information Systems (MIS)

sophomores taking CS21A Introduction to Computing, the introductory computer

science course. CS21A teaches the students object-oriented programming using

Java, following an objects-first approach. Every school year, the Ateneo has

five to six sections of CS21A, taught by two to three faculty members. All

lecture materials for these sections are uniform. The laboratory exercises, midterm

298 / RODRIGO ET AL.

exam, and final exam are departmental as well. Teachers are, however, free to give

their own hands-on exams and quizzes.

The teachers introduce students to debugging strategies in several ways. The

lecture components cite common errors, for example, type incompatibility or

off-by-one errors. Students are taught how to use the debugging features of

the IDE and are taught how to step through their code, while inspecting variable

values. During labs, students can consult teachers about errors. Teachers do help

them resolve syntactical errors in particular, on a one-on-one basis. Debugging

is also assessed. In the midterm and final exams, students are presented with

incorrect code and asked to explain what is wrong. Finally, at least one of the

hands-on exams is a debugging exam; that is, students are given syntactically

and logically erroneous code, and the expected output, and they are expected

to correct the errors.

Since 2006, the Department of Information Systems and Computer Science

has been using an instrumented version of the BlueJ Interactive Development

Environment (IDE) for Java (Kolling & Rosenberg, 1996). This version stored

student online protocols on a central server. The student compilation logs were

stored in SQLite format and contained a student ID, copy of the students’ program

as compiled at that moment, a time stamp, any errors the compilation produced,

and some other information.

To enable us to access the logs quickly and easily, and to generate reports

of interest, we updated the BlueJ Browser discussed in Rodrigo et al. (2009).

In the 2009 version, users could only perform data processing and visualization

after the laboratory session ended. The current version of the Browser, version 3,

can now collect and process data in real-time. Via the Browser, we can see the

students’ source code for each compilation they did, as well as view their source

side-by-side to how their work progresses (Figure 2). For a higher-level view,

the browser can also generate reports containing EQs, confusion rates, and error

counts (Figure 3). These reports can be viewed at different grain sizes such as

per student, per section, or per course.

For our analysis, we made use of five sources of data: student compilation

logs, EQ (Jadud, 2006), confusion rate (Lee, 2011), student midterm grades, and

an ease-of-learning student survey. The student compilations, EQs, and con-

fusion rates were accessed using the BlueJ Browser. Each type of data will be

discussed in turn.

Student Compilation Logs

The CS21A classes were conducted in classroom laboratories with a 1:1

student-to-computer ratio. During the classes, the students were engaged in

hands-on work. Each class session required students to perform non-graded

hands-on exercises. Every 2 weeks, students were given a graded lab in which

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 299

300 / RODRIGO ET AL.

F
ig

u
re

2
.

S
id

e
-b

y
-s

id
e

c
o

m
p

a
ri

s
o

n
o

f
s
u

c
c
e
s
s
iv

e
c
o

m
p

ila
ti
o

n
s

u
s
in

g
th

e
B

lu
e
J

b
ro

w
s
e
r.

final programs had to be submitted to the course instructor. Twice a semester, the

students were also given hands-on exams. The difference between the hands-on

exams and the graded labs was that students were expected to work independently

during the former. During the latter, the students were allowed to ask the teacher

or fellow students for advice.

For the purposes of this analysis, we only examined the logs from school

years 2009-2010, 2010-2011, and 2011-2012. Table 1 shows the breakdown of

the student population for those three school years. Note that we were unable

to capture 100% of student compilations. There were times when the server was

off during a lab session, leading to lost opportunities for data collection.

Error Quotient

There were two quantitative metrics used to analyze the log files: EQ and

confusion rate. Jadud’s (2006) EQ was a quantification of a student’s capacity to

cope with syntax errors. The EQ of each student per laboratory exercise and over

all laboratory exercises was computed based on the following algorithm:

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 301

Figure 3. Reports generated by the BlueJ browser.

Given a session of compilation events e1 through en,

1. Collate: Create consecutive pairs from the events in the session, for

example, (e1,e2),(e2,e3)...(en-1,en).

2. Calculate: Score each pair according to the algorithm presented in Figure 4.

3. Normalize: Divide the score assigned to each pair by 9 (the maximum value

possible for each pair).

4. Average: Sum the scores and divide by the number of pairs. This average

is taken as the EQ for the session.

An EQ score ranges from 0 to 1.0, where 0 means that the student alternated

between successful and unsuccessful compilations. A student’s EQ is a proxy

indicator of how efficiently he or she finds and resolves syntax errors. An EQ

of 1.0 means that the student encountered the same error on the same line all

the time. Succeeding studies showed that EQ negatively correlated with midterm

exam score (Rodrigo et al., 2009). A student with a poor average EQ was likely to

do poorly on the midterm exam.

Confusion Rate

Lee’s (2011) confusion rate was a machine-learned model of student confusion.

The algorithm first segregated student compilations into subsets or clips of eight

transactions each. The level of confusion within a clip was a function of the

number of compilations with errors, the maximum time between compilations

with errors, the average time between compilations, and the number of pairs of

compilations with the same error. The model returned a 1 if it judged the clip to

exhibit confusion. It returned a 0 otherwise. These decisions were totaled and

averaged across all clips for that lab session to determine the student’s confusion

rate. The confusion rate therefore ranged from 0 to 1.0 where 0 meant that none

of the student’s clips exhibited confusion. A confusion rate of 1.0 means that

all clips were judged to exhibit confusion. A subsequent study by Lee et al. (2011)

showed that when students’ confusion is successfully resolved, it is positively

302 / RODRIGO ET AL.

Table 1. Student Population Breakdown per School Year

School year

2009-2010 2010-2011 2011-2012

No. of CS21A sections

No. of CS majors

No. of MIS majors

Number of log files

6

61

92

52403

5

65

12

21848

5

54

90

116049

correlated with their midterm scores. Persistent confusion, on the other hand,

was negatively correlated with the midterm scores. These findings supported

D’Mello and Graesser’s (2012) model of cognitive disequilibrium in deep learning

environments. The model asserted that confusion was a useful affective state

if the student purposefully attempts to resolve cognitive conflict. If students

were unsuccessful, though, the result was likely to be frustration, boredom, and

disengagement with the learning task.

Student Midterm Grades

In the preceding text, we mentioned several times that we correlated our

measures with midterm scores. We used midterm scores instead of final grade

or final exam scores because CS21A only used BlueJ up to the midterm. After

the midterm, the students switch IDEs to JCreator. We therefore do not have

log files for programming problems and exercises after the midterm exam.

Ease-of-Learning Student Survey

In 2001 (Joint Task Force on Computing Curricula, IEEE Computer Society, &

ACM, 2001) and 2008 (Interim Review Task Force, Association for Computing

Machinery, & IEEE Computing Society, 2008), the Association of Computing

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 303

Figure 4. Flow chart showing the scoring method.

Machinery (ACM) and IEEE formed a task force to review the computer

science curriculum. One of the outputs of this task force was an articulation

of the fundamental constructs that students must learn from an introductory

computer science course. These include fundamental constructs of programming,

algorithmic problem solving, data structures, recursion, event-driven program-

ming, and object-oriented programming. These concepts are typically taught

over two to three semesters.

We created a survey form that listed the general topics that they were expected

to learn from the introductory course, as identified by the ACM and IEEE. We

then asked all currently-enrolled Computer Science sophomores, juniors, and

seniors and Management Information Systems juniors and seniors to indicate

whether they found a topic easy or difficult to learn (see Figure 5). Out of 294

students in 3 cohorts, 199 responded, for a response rate of 68%.

Final Data Set

We limited our analysis to students with complete data sets, i.e., survey respon-

dents with test scores, and whose logs we could definitively match. Of the 294

respondents, only 147 students’ data was complete.

304 / RODRIGO ET AL.

Instructions:

The items listed below are Object-Oriented Programming / Java Programming topics and

concepts discussed in your CS 21 A/B class. Place a check under the choice that best

describes how easy or difficult it was for you to understand each of these concepts.

Very

Easy Easy Neutral Difficult

Very

Difficult

1 Command-line input/output

2 Variable declaration and initialization

3 Arithmetic operators and assignment

statements

4 Logical operators

5 Ternary operator (?)

6 Control structure: Single selection (if)

7 Control structure: Double selection

(if-else)

Figure 5. An excerpt from the Ease-of-learning Student Survey.

ANALYSIS

Homogeneity of the Cohorts

We first attempted to determine whether each cohort varied significantly

in terms of midterm scores and ease of use. We divided the data by cohort

(all seniors, all juniors, all sophomores). A single factor analysis of variance

(ANOVA) showed that there was no significant difference among the three

groups (F(2, 144) = .535; p = .587).

To determine whether the cohorts differed in terms of their perception of

the ease or difficulty of CS21A, we converted the ease-of-learning responses to

numerical scores (e.g., Very Easy = 1, Easy = 2, and so on), and computed the

average ease-of-learning score per student. We once again used a single factor

ANOVA to compare the three cohorts and found among them (F(2, 144) = 1.336,

p = .266). This meant that the cohorts’ perception of the level of difficulty of

CS21A was uniform.

Differences among Terciles

We then divided the same data set into terciles based on the midterm score.

From Table 2, we see that the “high” tercile, is composed of 50 students with

the highest midterm score while the “low” tercile has the 48 students with the

lowest midterm scores.

When we compared the midterm scores of these three groups using a single-

factor ANOVA, the differences between groups was significant (F(2, 144) =

276.866, p < .01). A Tukey HSD post-hoc analysis confirmed that each tercile

varied significantly from the other. To determine whether the groups differed

in the way they perceived the relative ease or difficulty of CS21A, we again used

a Single-Factor ANOVA to compare their ease-of-learning scores. We found that

the groups did vary significantly (F(2, 144) = 12.735, p < .01). A Tukey HSD

post-hoc analysis showed that high-achieving and average students’ perception

of CS21A’s ease-of-learning was not significantly different. Both groups’ percep-

tion differed significantly, however, from the perception of the low-achieving

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 305

Table 2. Profile of Students in the Three Terciles

Midterm scores Ease-of-learning scores

Tercile N Mean Min Max SD Mean Min Max SD

High

Average

Low

50

49

48

82.48

66.78

53.16

73.50

62.00

30.00

99.00

73.00

61.00

6.92

3.29

7.48

2.28

2.48

2.94

1.14

1.20

1.33

4.00

3.63

4.63

6.92

0.69

0.67

students. Low-achieving students reported having a harder time with the subject

matter than the students in the other two groups.

We selected the middle one-third of the students, or 17 students per tercile,

for closer examination. We collected the EQs and confusion rates of each lab

session of each of these students. Since students had a variable number of labs,

we averaged the EQ and confusion scores. Table 3 shows that the high per-

formers typically had lower EQs than the low performers and that the high

performers’ confusion rates were lower than the other two groups. When we

compared these scores using a Single-factor ANOVA, though, the scores were

not significant, whether for EQ (F(2, 47) = 1.574, p = .218) nor confusion

(F(2, 46) = 1.212, p = .307).

This implies that the degree to which the groups struggled with the subject

matter was similar.

Problematic Topics

Upon examination of the survey results, we determined which topics the

students from the sample rated as “Hard” or “Very Hard,” and found that a

majority of the students had a hard time understanding event-driven pro-

gramming, especially threads (n = 30), exception (n = 15), and event handling

(n = 15). Another area that students found difficult involved concepts related

to object-oriented programming. These concepts include polymorphism (n = 22),

inheritance (n = 20), and encapsulation (n = 15). Finally, the survey revealed

that some students had a hard time learning how to declare and manipulate

multidimensional arrays (n = 21), which fell under the general topic of data

structures.

Unfortunately, we were only able to view logs which spanned only the first

half of the semester. This meant that only encapsulation and multidimensional

arrays will fall under the scope of our analysis. However, part of our analysis

was to confirm whether or not those topics which students found to be easy or

average in difficulty were indeed easy or average for all groups, or were only so

for one or two of the groups.

306 / RODRIGO ET AL.

Table 3. Average EQ and Confusion Scores of the Three Groups

EQ score Confusion score

Groups Mean Variance Mean Variance

Low

Average

High

.31

.22

.23

.15

.21

.14

.60

.50

.47

.30

.34

.27

Qualitative Evaluation of the Data

The student compilation logs that we inspected for this part of the analysis

only spanned the first half of the semester. This means that we had to limit our

analysis to topics covered in that time. Table 4 maps the ACM/IEEE recom-

mended topics against those topics covered in the logs we were able to examine.

In the course of the inspection, we found that the representatives of the various

groups tended to make similar mistakes.

Basic Syntax and Semantics of a Higher-Level Language

Representatives from all groups missed semi-colons, misspelled their vari-

ables, or forgot opening or closing curly braces. There were instances when

the students forgot that Java is a case-sensitive language: they spelled variable

KeyBoard as Keyboard or getBalance as getbalance (differences

bolded). For some students, these small errors can be difficult to find. One

student attempted to initialize an array of strings with literals, missing a ‘,’

between literals. She received 10 consecutive “‘}’ expected” errors.

The code snippet in Figure 6 of the student’s first compilation produces the

error mentioned above, which again was caused by a missing “,” between

the strings “i” and “j.” Throughout the next nine compilations, the student

tried various permutations of modifying the array. One of these was to put

all the elements of the array into a single line rather than splitting them into

two. Another was removing the strings “SPACE” and “ENTER” as elements of

the array. Eventually she correctly located the source of the error, and fixed

it accordingly.

The scope and lifetime of a variable was a concept that was not easily under-

stood. Students attempted to access variables local to one method from another

method, or variables declared inside a loop outside of the loop, or variables

local to one block of a control structure being referenced by another block

(e.g., if-else). In Figure 7, we see an example of the third instance, where the

variable is declared and initialized within the if-block, which makes it inacces-

sible in its corresponding else-block.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 307

String [] labels = {“a”, “b”, “c”, “d”, “e”, “f”,

“g”, “h”, “i” “j”, “k”, “l”, “m”, “n”, “o”,

“p”, “q”, “r”, “s”, “t”, “u”, “v”, “w”,

“x”, “y”, “z”, “SPACE”, “ENTER”};

Figure 6. Code snippet showing a missing comma between “i” and “j”.

Bold added for emphasis.

308 / RODRIGO ET AL.

Table 4. A List of the ACM/IEEE Topics against Topics Covered in the Log Files

ACM/IEEE topics Covered

Fundamental constructs of programming

Basic syntax and semantics of a higher-level language

Variable types, expressions, and assignment

Simple input and output

Conditional and imperative control structures

Functions and parameter passing

Structural decomposition

Algorithmic problem solving

Problem-solving strategies

Roles of algorithms in problem solving

Implementation strategies for algorithms

Debugging strategies

Data structures

Representation of numeric data

Range, precision, and rounding errors

Arrays

Representation of character data

Strings and string processing

Runtime storage management

Pointers and references

Linked structures

Implementation strategies for stacks, queues, and hash tables

Implementation strategies for graphs and trees

Strategies for choosing the right data structure

Recursion

Event-driven programming

Event handling

Event propagation

Exception handling

Object-oriented programming

OOP design

Encapsulation and information hiding

Separation of behavior and implementation

Classes and subclasses

Inheritance

Polymorphism

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

In this example, however, the student was able to fix the error quickly, declar-

ing flightCost outside of the if-block and initializing it within the if-

and else-blocks.

Variable Types, Expressions, and Assignment

The syntax of a declaration and assignment take time to learn. One student

intended to declare the variable money as a double using the syntax:

money = double money;

Students are sometimes unaware that their operations change the values of the

variables. In Figure 8, the student uses j++ when what she really means is j+1.

We see that the intent of the student was to compare a cell of a two-dimensional

array with an adjacent cell. The student however, mistakenly increments the

variable j by using j++ as its array index. Although the code was syntactically

correct, it was logically wrong and caused an array index out of bounds error

during run time.

Simple Input and Output

It was difficult for students to discriminate between the use of print,

println, and printf. We found an instance in which a student used a

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 309

public double sellSeats(int regSeats,

int discountSeats, int premiumSeats)

{

if (availSeats < regSeats +

discountSeats + premiumSeats)

{

int flightCost = 0;

}

else

{

flightCost = (regSeats *

regPrice) + (discountSeats * (0.9 * regPrice))

+ (premiumSeats * (1.1 * regPrice));

. . .

}

totalSales = totalSales + flightCost;

return totalSales;

}

Figure 7. Code snippet showing the variable flightCost is out of scope.

Bold added for emphasis.

println, but with the format specifiers and argument vectors of the printf.

The student was confused because the error message he received was

“cannot find symbol, method println(java.lang.String,

double).”

Another instance was the case in which the student used printf with string

concatenations, forcing it to function like a print (see Figure 9).

Although the compiler found no error for the code was syntactically correct, it

was a semantically inappropriate use of the construct. This misleads the student,

making him think that his current mental model of Java syntax is correct because

there is no appropriate feedback being given that says otherwise.

Some students solved their compilation errors through experimentation

(Perkins et al., 1986). Figure 10 shows a student’s attempts at finding the correct

placement for the ‘\n’. He first tries several permutations of ‘\n’ (‘\n’ in

Figure 10a, ‘/n’ in Figure 10b, and ‘n\’ in Figure 10c) outside of the quotation

marks before finally arriving at the correct syntax, which was to place ‘\n’ within

the quotes.

Conditional and Imperative Control Structures

Students are sometimes confused between the use of ‘=’ and ‘==’. We found

at least two instances in the average tercile in which students used ‘=’ as a

comparator (see Figure 11).

In this code excerpt, it is clear that the student’s intention in the code line

if (ePass = true)

310 / RODRIGO ET AL.

for (i = 0; i < 9; i ++)

{

for (j = 0; j < 9; j ++)

{

if (sudoku[i][j] != sudoku[i][j++])

{

validRows = true;

}

else

validRows = false;

}

}

Figure 8. Code snippet showing a use of j++ instead of J+1.

Bold added for emphasis.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 311

System.out.printf(n\"TOLL LANE 2: Php %.2f, %d cars, %d e-pass users,

%d violators.", lane2.getCash(), lane2.getCars(),

lane2.getEpassUsers(), lane2.getViolators());

Figure 10c. Code snippet showing a use of ‘n\’ outside the quotes.

Bold added for emphasis.

System.out.printf(“| Gate 1 | Php ” + “%2.2f” + “ | ”

+ gate1.getSJT() + “ | ” + gate1.getSVT() + “ | ”

+ gate1.getBonuses() + “ |\n”, gate1.getCollections());

Figure 9. Code snippet showing a use of printf like as print.

Bold added for emphasis.

System.out.printf(\n"TOLL LANE 2: Php %.2f, %d cars, %d e-pass users,

%d violators.", lane2.getCash(), lane2.getCars(),

lane2.getEpassUsers(), lane2.getViolators());

Figure 10a. Code snippet showing a use of ‘\n’ outside the quotes.

Bold added for emphasis.

System.out.printf(/n"TOLL LANE 2: Php %.2f, %d cars, %d e-pass users,

%d violators.", lane2.getCash(), lane2.getCars(),

lane2.getEpassUsers(), lane2.getViolators());

Figure 10b. Code snippet showing a use of ‘/n’ outside the quotes.

Bold added for emphasis.

was to check if the value of the boolean value ePass is equal to true.

Note, however, how the student did not seem to notice the difference in his use

of the ‘=’ operator in the abovementioned line and, for instance, the line

ePassBalance = ePassBalance - tollFee;

where the function of the operator was for assignment and not comparison.

By using ‘=’ instead of ‘= =’, the student unknowingly performs an assignment

function rather than a comparison, consequently making the if-statement

always true.

Program control flow was difficult for some students to grasp. Some students

put statements after a return (Figure 12), resulting to an ‘unreachable

statement’ error thrown by the compiler. This particular error lasted 19

compilations and took about 5 minutes to resolve.

Functions and Parameter Passing

It takes students time to learn to invoke methods and use method parameters

correctly. They forget to use the dot operator or forget to use a ‘()’ after the

name of a method with no parameters. When a method does have parameters,

they often invoke methods with the wrong parameter list (Figure 13).

The following code examples, the snippets from RiceTrader and

RiceTraderTester show a mismatch between the parameter list when the

method buyOneSack was invoked by the objects fernando and julio

and the actual number and kind of parameters required in the method definition.

312 / RODRIGO ET AL.

public void letCarPass (boolean ePass, double

ePassBalance, double tollFee)

{

if (ePass = true)

{

if (ePassBalance >= tollFee)

ePassBalance = ePassBalance - tollFee;

return ePassBalance;

else (ePassBalance < tollFee)

ePassBalance = ePassBalance –

epassBalance;

}

...

}

Figure 11. Code snippet showing a use of ‘=’ as a comparator

instead of ‘==’. Bold added for emphasis.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 313

if (donutTotal > 0)

{

donutTotal –= totalDonutsOrdered;

donutSales += (donutCost *

totalDonutsOrdered);

donutSold += totalDonutsOrdered;

return donutSales;

if (oneFreeDonut) || (loyaltyCard == 12)

{

donutFree += 1;

donutSales –= totalDonutsOrdered;

}

}

Figure 12. Code snippet showing a misplacement of the ‘return’ statement.

Bold added for emphasis.

//in class RiceTrader:

public void buyOneSack(double pricePerSack)

{

CashOnHand = CashOnHand - (pricePerSack

* amount);

RiceLeft = RiceLeft + amount;

}

//in class RiceTraderTester:

public static void main(String args[])

{

RiceTrader fernando = new

RiceTrader();

RiceTrader anita = new RiceTrader();

RiceTrader julio = new RiceTrader();

fernando.buyOneSack(1, 598);

anita.sellRice (1, 739.69);

julio.buyOneSack(1, 624.43);

fernando.sellRice (7, 28.38);

}

//in class RiceTester:

System.out.println(“Fernando has sold” +

getKilosSold() + “ kilos of rice.”);

Figure 13. Code snippet where the student invoked a method with

the wrong parameter list. Bold added for emphasis.

The code snippet from RiceTester, on the other hand, shows the student

forgetting to use the ‘.’ operator when invoking the methodgetKilosSold().

Students also make the mistake of assigning values to parameters instead

of using the parameters to initialize field variables, as seen in Figure 14.

OOP Design

Students resist the idea of using a constructor to initialize their variables. Instead

of creating a constructor, they opt to initialize fields directly (Figure 15). In the

process, they also leave some fields uninitialized.

314 / RODRIGO ET AL.

public Segment(double px1, double py1, double

px2, double py2)

{

px1=1;

px2=1;

py1=1;

py2=1;

}

Figure 14. Code snippet showing wrong initializations.

Bold added for emphasis.

public class SodaTrader

{

double cashOnHand = 500;

int cansSold;

int cansLeft;

...

public void printReportC()

{

System.out.println(“Crispin has sold ” +

cansSold + “ cans. He has Php” + cashOnHand + “ and ”

+ cansLeft + “ cans left.”);

System.out.println(“END OF REPORT”);

}

}

Figure 15. Code snippet showing direct initialization of fields.

Bold added for emphasis.

From the low-achieving tercile, there was an example in which the student

did not understand how to declare and instantiate an object. In Figure 16, what

the student intends to do is declare and instantiate a variable page to be of type

Page. Instead, she declares page as an int and attempts to perform operations

on it that can only be performed with an object of type Page.

Encapsulation and Information Hiding

Access modifiers and the use of accessor methods are a challenge for students

to understand. We have seen code in which students skirt around the issue

by declaring all fields as public and not using accessor methods at all

(Figure 17).

In this code fragment, the student, except for the constants, erroneously

declared all of the class’ attributes as public. By doing this and not using

accessor methods, the student fails to learn the concept of encapsulation.

Apart from this, the student does not realize that other objects that reference

this class’ attributes are open to change these values unknowingly, and often,

accidentally.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 315

public double sellSpace(int page, double size)

{

// invokes the sellSpace method on the page

// object indicated in the first

// parameter, page

Page needed;

if (page.equals(“page1"))

needed = page1;

else if (page.equals(“page2"))

needed = page2;

else if (page.equals(“page3"))

needed = page3;

else if (page.equals(“page4"))

needed = page4;

else

{

System.out.println(“I don’t have that

product");

return 0;

}

}

Figure 16. Code snippet showing wrong type declaration for Page.

Bold added for emphasis.

Others

In addition to the observations we noted using the topics specified in

the ACM/IEEE curriculum, we also had additional observations about how

students approach their programming tasks. For instance, in one of the high-

performing student’s logs, we found the use of helpful comments, as shown in

Figure 18.

Through the use of these comments, the student was able to articulate how

each of the code blocks should work, thus reducing the probability of errors

in logic.

On the other hand, some of the students in the low-performing tercile included

useless text in their code. We saw at least one instance of a random keyboard

bang. There was another instance when a student inserted the text “ewan

something” (ewan is an informal Filipino phrase for “I don’t know”) in

her code.

DISCUSSION AND CONCLUSIONS

There are three ways in which we wish to consider the results of this

and previous studies regarding the behavior of novice programmers. First,

there are the direct results and implications of the work: our “take away”

regarding novice programmers, their behaviors, and the results of their

efforts. Second, we consider the ways in which data regarding programmer

behavior and affect can be used by students and educators alike to shape

our practices as learners and educators. Finally, we consider the potential

impact that large scale data collection and analysis might have on educational

research and practice.

316 / RODRIGO ET AL.

public class Flight

{

public double rglrPrice, fuelPrice, seatCost,

fuelCost, money;

public int seatsAvailable, rglrSeats,

premSeats, discSeats, totalSeats;

...

}

Figure 17. Code snippet showing a refusal to use access modifiers.

Bold added for emphasis.

Direct Results Regarding Student Behavior,

Affect, Perceptions, and Errors

We summarize the findings of this study in terms of the research questions:

How do the groups differ in terms of EQ? EQ does not differ significantly

between groups. However, high-achieving students, on average, have lower EQs

than low-performing students.

How do the groups differ in terms of confusion rate? High-achieving students

are generally less confused than the low-achieving and average students.

However, once again, this difference was not statistically significant.

As EQ is a quantification of students’ ability to cope with syntax errors, the

findings imply that all groups struggled to a similar degree. However, the average

EQ scores in Table 3 show that high-achieving and average students generally

resolve syntax errors more effectively than low-performing students. Previous

studies support this finding: students with low error quotients spend less time

fixing syntax errors, often doing so correctly on the “first try,” whereas peers

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 317

if (ePass)

// if car is using an epass..

{

if (ePassBalance < tollFee)

// if epassbalance is less than the toll fee,

// add car to the violators

{

...

}

else

// let car pass through, then subtract the

// toll fee from the e-pass balance. Which

// is pointless

{

...

}

}

else

// if car is not using epass...

{

...

}

Figure 18. Code snippet showing a helpful use of comments.

with higher error quotients and confusion rates often confound the error with

additional layers of syntactic error, failing to correct the original problem (see

Jadud, 2006; Lee et al., 2011). We would argue that this allows the higher

performing students to spend more time on task, interacting with and testing

the code they have written, as opposed to “thrashing” on syntactic issues. We feel

this is reflected in the students’ self-reporting regarding their perception of

difficulty in CS21A: high-performing students reported having an easy time

learning the course material, while students in the low-performing tercile reported

having a more difficult time.

How do groups differ in their perception of the ease or difficulty in learning

introductory computer science topics? We found that high-achieving and average

students’ perception of the difficulty of the subject matter was not statistically

significant. Low-achieving students, on the other hand, reported having a statis-

tically significantly harder time with the subject matter than the two other groups.

What errors or misconceptions is each group more prone to make? All three

groups tended to make the same types of errors. They had difficulty locating

typographical errors. The concepts of variable scope and lifetime were difficult

to internalize. The subtle differences between the equality comparator and

the assignment operation were easy to overlook. The different forms of print

statements were often interchanged. Object-oriented constructs such as the use

of constructors, the notion that classes are data types, and encapsulation were

difficult to grasp.

For computer science researchers and educators, the findings have impli-

cations on instruction. The common errors describe concepts that students have

difficulty understanding and should therefore warrant more explanation during

instruction. Instructors also have to have an eye out for low-achieving students.

Their perception that introductory programming is difficult could lead to di-

scouragement or frustration.

One approach to aiding students in learning to deal with syntactic errors could

be to focus more on the process they are learning, helping students to become

more self-aware and reflective in their work (as encouraged by Lewandowski’s

process journals). However, the frustration and confusion that students experi-

ence when programming are emotions and confusion in the moment. To this

end, pedagogic approaches that directly support students in meaningful ways

while they are engaged in programming (and, therefore, learning) are, we

believe, critical.

At the 2013 Symposium for Computer Science Education, Bailey-Lee, Parris,

Porter, Spacco, and Simon presented a series of papers surrounding the applica-

tion of peer instruction and pair programming to the introductory computing

curriculum at the University of California at San Diego. They found that peer

instruction halved their failure rates (Porter, Lee, & Simon, 2013), improved their

retention rate by as much as 30% (Porter & Simon, 2013), and that instructional

method (peer instruction vs. traditional lecture) had a significant impact on

318 / RODRIGO ET AL.

traditional outcome measures (Simon, Parris, & Spacco, 2013). While it is

dangerous to infer too much from a single set of studies, there is growing evidence

across many disciplines that pedagogic approaches that increase student-student

interactions have significant, positive impacts on student learning.

Reactive and Anticipatory Support Environments

In the section on prior work, we discussed the development of anticipatory,

reactive tools that support novice programmers. Some of these systems are

currently being used in professional development environments. From their

website, the Stanford HCI group describes “opportunistic programming” as “a

method of software development that emphasizes speed and ease of develop-

ment over code robustness and maintainability” (Standford HCI Group, n.d.).

HelpMeOut, mentioned in the prior work, is an embedded context-aware search

tool in the software development environment, making it easy for programmers

to search the WWW for examples relevant to the rapid development of programs

in Adobe Flex (Hartmann et al., 2010). This tool carries the trade name Blueprint,

and is implemented in Adobe Flash Builder 4.

We suggest that syntax-directed editors, perhaps best typified today by systems

like Scratch, might be considered anticipatory-proactive. Scratch makes it diffi-

cult, if not impossible, for a young programmer to write a program with a syntax

error, because of its syntax-directed nature. It might also be argued that this is

simply a restriction, but given that the compiler will only accept syntactically

correct programs, we find the rhetorical question hard to resist: why do we even

allow novices to construct syntactically incorrect programs in the first place,

given the negative impact we feel it has on student learning? Systems like Mentor

have been around since the 1970s, and even today, syntax directed systems

come and go for a variety of languages and novice programming environments

(Lang, 1986; PLT, n.d.).

Consistently, syntax-directed systems are found to be good for novice pro-

grammers, yet we as educators continue to educate our students with tools that

exist in the strictly reactive-defensive and reactive-responsive paradigm. From

personal conversation with the authors of novice programming environments,

we know that these decisions are rarely made with data: instead, deeply held

beliefs about how students should learn to program, or how the environment’s

author learned to program are strong design and development motivators, not

fundamental research regarding the usability of their tools or the learning of the

students who use those environments.

Impact of Large Scale Educational Data

Collection and Analysis

Our last discussion point is the use of large scale data collection and analysis

to inform educational theory and practice. Educational data mining is a growing

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 319

field of study concerned with “the use of large-scale educational data sets to better

understand learning and to provide information about the learning process”

(Romero, Ventura, Pechenizkiy, & Baker, 2011). Educational data mining

research generally falls in three broad categories: the development of tools and

techniques that are suited for working with very large data sets, the analysis of

the data to answer questions about learning, and the presentation of meaningful

findings to educational stakeholders.

The tools and methods used in this article are exemplars of educational data

mining in novice programmer research. The gathering of online protocols

produces a fine-grained record of student programming activity. These data

lend themselves to the computation of EQ or confusion rate—metrics developed

specifically for the quantification of novice programmer behavior and affect.

The BlueJ Browser automatically computes these and other metrics, and presents

the information to faculty and researchers. As a result, we know more about

what students do and how they feel as they program, and we gain evidence-based

clues as to how to help them.

Using this information to help the learner is, we believe, the next big chal-

lenge in the space of novice programming environments. In the simplest case,

visualizing this data in an easy-to-digest form could allow instructors to quickly

engage in an automated, formative assessment of their students. This would

allow instructors and teaching assistants to provide additional learning support

to students in a timely, supportive manner, as opposed to waiting for evaluation

points (like examinations) to provide guidance.

In online learning contexts, we can imagine that data and analyses of the sort

described here could be used to automatically engage students in timely questions,

tutoring, or contextual error support that goes beyond what the compiler alone is

capable of providing. Initial work in this direction has been explored previously,

but to the best of our knowledge never applied on a large scale (Marceau, Fisler,

& Krishnamurthi, 2011).

In the context of Decker and Anderson’s scale from that which is reactive

to anticipatory, we believe it will take educators and developers working

together to actively transform the way we write programs if we want to provide

(technological) anticipatory-proactive support for novice programmers. Some

developers and researchers are already thinking this way: Bret Victor, a former

Apple design software engineer, has demonstrated some very engaging active

manipulation tools for the Processing programming environment (Victor,

2012), and Hundhausen et al. have demonstrated through sound research that

direct manipulation interfaces are effective in supporting novice programmers

in learning to program (Hundhausen, Brown, Farley, & Skarpas, 2006).

While it is true that we are interested in finding ways to support more students,

in more places, through the use of data and technology, we currently have no

data regarding novice programmer behavior from educators employing pair

programming in the classrooms (McDowell, Werner, Bullock, & Fernald, 2006;

320 / RODRIGO ET AL.

Williams & Kessler, 2000). Given the amount of research regarding the benefits

of pairwise collaboration of students in introductory computing contexts, we

believe that a fine-grained analysis of pair programmer behavior could be

extremely illuminating when it comes to developing new tools to support students

in a proactive manner.

ACKNOWLEDGMENTS

The authors thank our colleagues Jessica Sugay and Walfrido David Diy for

their helpful comments and insights, and the CS21A faculty and their students

who participated in the study.

REFERENCES

Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging

among novice computer science students. Proceedings of the 10th annual SIGCSE

conference on Innovation and Technology in Computer Science Education – ITiCSE

’05 (pp. 84-88). New York, NY: ACM Press. doi: 10.1145/1067445.1067472

Bonar, J., Khrlich, K., Soloway, E., & Rubin, E. (1982). Collecting and analyzing on-line

protocols from novice programmers. Behavior Research Methods & Instrumentation,

14(2), 203-209.

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice programming.

Proceedings of the 10th ACM SIGACT-SIGPLAN Syposium on Principles of Pro-

gramming Languages – POPL ‘83 (pp. 10-13). New York, NY: ACM Press. doi:

10.1145/567067.567069

Dann, W., Cooper, S., & Pausch, R. (2008). Learning to program with Alice (2nd. ed.).

Upper Saddle River, NJ: Pearson Education Inc.

Decker, D., & Anderson, C. (1989). From reactive to proactive: A continuum. Journal of

Extension, 27(3). Retrieved from http://www.joe.org/joe/1989fall/f1.php

de Leon, M., Espejo-Lahoz, M. B., & Rodrigo, M. M. (2008). An analysis of novice

programmer doodles and student achievement in an introductory programming class.

Philippine Information Technology Journal, 1(2), 17-21.

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012). All syntax errors are not equal.

Proceedings of the 17th ACM Annual Conference on Innovation and Technology

in Computer Science Education – ITiCSE ‘12 (p. 75). New York, NY: ACM Press.

doi: 10.1145/2325296.2325318

D’Mello, S., & Graesser, A. (2012). Dynamics of affective states during complex learning.

Learning and Instruction, 22(2), 145-157. Elsevier Ltd. doi: 10.1016/j.learninstruc.

2011.10.001

Dy, T., & Rodrigo, M. M. (2010). A detector for non-literal Java errors. Proceedings of

the 10th Koli Calling International Conference on Computing Education Research –

Koli Calling ’10 (pp. 118-122). New York, NY: ACM Press. doi: 10.1145/1930464.

1930485

Freund, S. N., & Roberts, E. S. (1996, February). Thetis: An ANSI C programming

environment designed for introductory use. Proceedings of the trail verison of

the twenty-seventh SIGCSE technical symposium on computer science education

(pp. 300-304), February 15-17, 1996, Philadelphia, Pennsylvania.

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 321

Goldenson, D. R. (1989). The impact of structure editing on introductory computer

science education: The results so far. SIGCSE Bulletin, 21(3), 26-29.

Hartmann, B., Macdougall, D., Brandt, J., & Klemmer, S. R. (2010). What would

other programmers do: Suggesting solutions to error messages. Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems – CHI ’10

(pp. 1019-1028). New York, NY: ACM Press. doi: 10.1145/1753326.

1753478

Hughes, M. C., Jadud, M. C., & Rodrigo, M. M. T. (2010). String formatting considered

harmful for novice programmers. Computer Science Education, 20(3), 201-228. doi:

10.1080/08993408.2010.507335

Hundhausen, C. D., Brown, J. L., Farley, S., & Skarpas, D. (2006). A methodology

for analyzing the temporal evolution of novice programs based on semantic com-

ponents. Proceedings of the 2006 International Workshop on Computing Education

Research – ICER ’06 (p. 59). New York, NY: ACM Press. doi: 10.1145/1151588.

1151599

Interim Review Task Force, Association for Computing Machinery, & IEEE Com-

puting Society. (2008). Computer Science curriculum 2008: An interim revision of

CS 2001. Retrieved from http://www.acm.org./education/curricula/ComputerScience

2008.pdf

Jackson, J., Cobb, M., & Carver, C. (2005). Identifying top Java errors for novice

programmers. Frontiers in Education 35th Annual Conference – FIE ‘05 (pp. T4C-24–

T4C-27). doi: 10.1109/FIE.2005.1611967

Jadud, M. (2006). An exploration of novice compilation behaviour in BlueJ. Doctoral

dissertation. Retrieved from Kent Academic Repository.

Joint Task Force on Computing Curricula, IEEE Computer Society, & ACM. (2001).

Computing curricula 2001. Retrieved from http://www.acm.org/education/curric_

vols/cc2001.pdf

Kolling, M., & Rosenberg, J. (1996). Blue—A language for teaching object-oriented

programming. In K. J. Klee (Ed.), Proceedings of the Twenty-Seventh SIGCSE

Technical Symposium on Computer Science Education (SIGCSE ‘96). New York, NY:

ACM Press (pp. 190-194). doi: 10.1145/236452.236537. Available at http://doi.acm.

org/10.1145/236452.236537

Kummerfeld, S. K., & Kay, J. (2003, January). The neglected battle fields of syntax

errors. In Proceedings of the fifth Australasian conference on computing education

(Vol. 20; pp. 105-111). Australian Computer Society, Inc.

Lane, H. C., & VanLehn, K. (2005). Intention-based scoring: An approach to measuring

success at solving the composition problem. Proceedings of the 36th SIGCSE

Technical Symposium on Computer Science Education – SIGCSE ’05 (pp. 373-377).

doi: 10.1145/1047124.1047471

Lang, B. (1986). On the usefulness of syntax directed editors. In R. Conradi, T. M.

Didricksen, & D. H. Wanvik (Eds.), Advanced programming environments: Pro-

ceedings of an international workshop (pp. 47-51). London, UK: Springer-Verlag.

doi: 10.1007/3-540-17189-4_87

Lee, D. (2011). Detecting confusion among novice programmers using BlueJ compile

logs. Unpublished master’s thesis. Ateneo de Manila University, Quezon City,

Philippines.

322 / RODRIGO ET AL.

Lee, D. M., Rodrigo, M. M. T. R., Baker, R. S. J. D., Sugay, J. O., & Coronel, A. (2011).

Exploring the relationship between novice programmer confusion and achievement.

In S. D’Mello & A. Graesser (Eds.), ACII 2011, Part 1. LNCS 6974 (pp. 175-184).

Berlin Heidelberg, Germany: Springer-Verlag.

Lewandowski, G. (2003). Using process journals to gain qualitative understanding of

beginning programmers. Journal of Computing Sciences in Colleges, 19(1),

299-310.

Lewandowski, G., Gutschow, A., McCartney, R., Sanders, K., & Shinners-Kennedy, D.

(2005). What novice programmers don’t know. Proceedings of the 2005 International

Workshop on Computing Education Research – ICER ’05 (pp. 1-12). New York, NY:

ACM Press. doi: 10.1145/1089786.1089787

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., et al. (2004).

A multi-national study of reading and tracing skills in novice programmers. ACM

SIGCSE Bulletin, 36(4), 119-150. New York, NY: ACM Press. doi: 10.1145/1041624.

1041673

Lynch, W. C. (1967). Description of a high capacity fast turnaround university computing

center. Proceedings of the 1967 22nd National Conference – ACM ‘67 (pp. 273-288).

New York, NY: ACM Press. doi: 10.1145/800196.805997

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch

programming language and environment. ACM Transactions on Computing Educa-

tion, 10(4). New York, NY: ACM Press. doi: 10.1145/1868358.1868363

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Measuring the effectiveness of

error messages designed for novice programmers. Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education – SIGCSE ’11 (pp. 499-504).

New York, NY: ACM Press. doi: 10.1145/1953163.1953308

Matthews, J. (2011). Assessing organizational effectiveness: The role of performance

measures. The Library Quarterly, 81(1), 83-110. Chicago, IL: The University of

Chicago Press. doi: 10.1086/657447

McCartney, R., Moström, J. E., Sanders, K., & Seppälä, O. (2005). Take note:

The effectiveness of novice programmers’ annotations on examinations. Infor-

matics in Education, 4(1), 69-86. Vilinus, Lithuania: Institute of Mathematics and

Informatics.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y., et al.

(2001). A multi-national, multi-institutional study of assessment of programming skills

of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-180. New York, NY:

ACM Press. doi: 10.1145/572139.572181

McDowell, C., Werner, L., Bullock, H., & Fernald, J. (2006). Pair programming improves

student retention, confidence, and program quality. Communications of the ACM,

49(8), 90-95. doi: 10.1145/1145287.1145293

Miller, P., Pane, J., Meter, G., & Vorthmann, S. (1994). Evolution of novice program-

ming environments: The structure editors of Carnegie Mellon University. Interactive

Learning Environments, 4(2), 140-158.

Murphy, C., Kaiser, G., Loveland, K., & Hasan, S. (2009). Retina: Helping students and

instructors based on observed programming activities. Proceedings of the 40th ACM

Technical Symposium on Computer Science Education – SIGCSE ’09 (pp. 178-192).

New York, NY: ACM Press. doi: 10.1145/1508865.1508929

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 323

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of

learning in novice programmers. Journal of Educational Computing Research, 2(1),

37-55. Amityville, NY: Baywood. doi: 10.2190/GUJT-JCBJ-Q6QU-Q9PL

PLT. (n.d.). DivaScheme. Brown Computer Science. Retrieved from http://cs.brown.edu/

research/plt/software/divascheme

Porter, L., Lee, C. B., & Simon, B. (2013). Halving fail rates using peer instruction: A

study of four computer science courses. In Proceeding of the 44th ACM Technical

Symposium on Computer Science Education (SIGCSE ‘13) (pp. 177-182). New York,

NY: ACM Press. doi: 10.1145/2445196.2445250. Available at http://doi.acm.org/

10.1145/2445196.2445250

Rodrigo, M. M., Tabanao, E., Lahoz, M. B., & Jadud, M. (2009). Analyzing online

protocols to characterize novice Java programmers. Philippine Journal of Science,

138(2), 177-190.

Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. d. (2011). Handbook of

educational data mining. Boca Raton, FL: Taylor & Francis Group.

Simon, B., Parris, J., & Spacco, J. (2013). How we teach impacts student learning: Peer

instruction vs. lecture in CS0. In Proceeding of the 44th ACM Technical Symposium

on Computer Science Education (SIGCSE ‘13) (pp. 41-46). New York, NY: ACM

Press. doi: 10.1145/2445196.2445215. Available at http://doi.acm.org/10.1145/

2445196.2445215

Sison, R., & Chen, J. J. (2005). Intention-based diagnosis of novice C programmer

errors in a web-based tutoring system. Journal Research in Science, Computing and

Engineering, 2(1), 34-41.

Stanford HCI Group. (n.d.). Opportunistic programming: Helping people prototype,

ideate, and discover by building software. Stanford HCI Group. Retrieved from

http://hci.stanford.edu/research/opportunistic/

Thomasson, B., Ratcliffe, M., & Thomas, L. (2006). Identifying novice difficulties in

object oriented design. Proceedings of the 11th Annual SIGCSE Conference on

Innovation and Technology in Computer Science Education – ITICSE ’06 (pp. 28-32).

New York, NY: ACM Press. doi: 10.1145/1140123.1140135

Traver, V. J. (2010). On compiler error messages: What they say and what they mean.

Advances in Human-Computer Interaction, 2010, 1-26. doi: 10.1155/2010/602570

Truong, N., Roe, P., & Bancroft, P. (2004). Static analysis of students’ Java programs.

Proceedings of the Sixth Australasian Conference on Computing Education – ACE ‘04

(pp. 30, 317-325). Darlinghurst, Australia: Australian Computer Society, Inc.

Vee, M. N. C., Meyer, B., & Mannock, K. L. (2006). Understanding novice errors

and error paths in object-oriented programming through log analysis. Proceedings

of the Workshop on Educational Data Mining at the 8th International Conference

on Intelligent Tutoring Systems – ITS 2006 (pp. 13-20). New York, NY: ACM

Press.

Victor, B. (2012). Learnable programming: Designing a programming system for under-

standing programs. Bret Victor. Retrieved from http://worrydream.com/#!/Learnable

Programming

Williams, L., & Kessler, R. (2000). All I really need to know about pair programming I

learned in kindergarten. Communications of the ACM, 43(5), 108-114. New York, NY:

ACM Press. doi: 10.1145/332833.332848

324 / RODRIGO ET AL.

Worsley, M., & Blikstein, P. (2013). Programming pathways: A technique for analyzing

novice programmers’ learning trajectories. In K. Yacef et al. (Eds.), AIED 2013, LNAI

7926 (pp. 844-847). Berlin, Germany: Springer-Verlag.

Direct reprint requests to:

Ma. Mercedes Rodrigo

Ateneo Laboratory for the Learning Sciences

Department of Information Systems and Computer Science

Ateneo de Manila University

Quezon City 1108, Philippines

e-mail: mrodrigo@ateneo.edu

ANALYSIS OF JAVA PROGRAMMING BEHAVIORS / 325

